TeV Scale Resonances in CMS

Piotr Traczyk (CALTECH) For the CMS Collaboration

> LISHEP 2011 Rio de Janeiro

LISHEP 2006

Outline

- The CMS detector
- Object reconstruction
- TeV scale resonance searches

The CMS detector

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

Overall diameter Overall length Magnetic field

: 15.0 m : 28.7 m : 3.8 T

~7k channels

Photon Identification

Photon = deposit in ECAL, no track

Photon Identification

- Photon = deposit in ECAL, no track
- Identification requirements:
 - Tracker Isolation $E_{\tau} < 2.0 + 0.001 * E_{\tau}^{sc}$
 - ECAL Isolation $E_{T} < 4.2 + 0.006 * E_{T}^{sc}$
 - HCAL Isolation $E_{T} < 2.2 + 0.025 * E_{T}^{sc}$
 - H/E (ratio of HCAL/ECAL energy) < 0.05
 - Shower shape selection (require small spread in eta)
 - (optional) Pixel match veto reject events with pixel track compatible with the supercluster

Electron Identification

- Electron = deposit in ECAL + Tracker track
- Dedicated reconstruction of high energy electrons

Electron Identification

- Electron = deposit in ECAL + Tracker track
- Dedicated reconstruction of high energy electrons
 - Energy measurement from ECAL supercluster energy
 - Require electron to be "ECAL driven"
 - Reject superclusters close to the gap between barrel and endcap
 - Matching between the supercluster and tracker track
 - H/E (ratio of HCAL/ECAL energy) < 0.05
 - Isolation in ECAL, HCAL and Tracker
 - Shower shape selection (require small spread in eta)

Muon Identification

- Muon = Tracker track + track in the Muon System
- High pT muon momentum measurement challenging due to very small curvature and electromagnetic showering in the iron yoke

Muon Identification

- Muon = Tracker track + track in the Muon System
- High pT muon momentum measurement challenging due to very small curvature and electromagnetic showering in the iron yoke

Muon Identification

- Muon = Tracker track + track in the Muon System
- High pT muon momentum measurement challenging due to very small curvature and electromagnetic showering in the iron yoke
- Identification requirements:
 - Reconstructed by both outside in "global muon" and inside out "tracker muon" algorithm, global track χ^2 /ndf < 10
 - Number of matched muon stations with track segments > 1
 - Number of tracker hits > 10, number of pixel hits > 0
 - Impact parameter with respect to primary vertex < 2mm

11

 Dedicated momentum reconstruction for high pT, including rejection of muon stations with showers etc.
 P. Traczyk, TeV Scale Resonances in CMS

Jet identification

- Jets identified using a particle flow algorithm
 - combining tracker and calorimeter information to reconstruct the full list of particles in the event
 - Particles are then clustered into jets
 - Anti- k_{+} algorithm used for clustering (0.5, 0.7 cone sizes)

The Analyses

P. Traczyk, TeV Scale Resonances in CMS

Di-lepton resonances

- Theoretical motivation:
 - A new heavy gauge boson Z' is predicted in a number of BSM theories
 - Benchmark models: Z'_{ssm} , GUT-inspired Z'_{ψ} and Randall-Sundrum gravitons
- Signal process: $qq \rightarrow Z'/G^* \rightarrow l^+l^-$; $gg \rightarrow G^* \rightarrow l^+l^-$
- Backgrounds
 - Drell-Yan di-leptons
 - Other sources of dileptons: $t\overline{t}$, tW, dibosons
 - Misidentified leptons: W+jets, QCD
 - Cosmic-ray muons

8.07.2011

Di-lepton analysis

- Select events with a single muon (up to 15 GeV) or double ECAL cluster (up to 22 GeV) triggers
- Require two isolated reconstructed leptons (opposite charge requirement for muons)
- Cosmic-ray muons suppressed by rejecting events with back-to-back muons (require angle < π -0.02 rad)
- Analysis based on shape (unbinned maximum likelihood fits) – robust against normalization uncertainties
 - normalized to the Z^o peak to convert the limit on number of signal events into a limit on cross-section
- Combine electron and muon likelihoods

Z'->dileptons results

Z'->dileptons results

...not yet.

Z'->dileptons results

Exclude at 95% C.L. Z'_{SSM} below 1140 GeV, Z_{Ψ} below 887 GeV, RS G* below 855 (1079) GeV for k/M_D=0.05 (0.1)

Di-photon resonances

- Theoretical motivation:
 - Unlike the Z', the RS graviton decays to photon pairs (BR
 2x larger than the di-muon or di-electron decay)
- Signal process: $qq/gg \rightarrow G^* \rightarrow \gamma\gamma$
- Backgrounds:
 - SM prompt γγ production from quark annihilation ("Born") and gluon fusion ("Box") process
 - Events with misidentified photons: γ +jets, dijets, Z \rightarrow ee rates estimated from data
- Analysis: use double photon trigger (up to 17/22 GeV), select events with 2 photons in the ECAL barrel; count
 8.07. Events above a massing to falle Resonances in CMS

RS $G^* \rightarrow \gamma \gamma$ results

 RS gravitons excluded below 931 (729) GeV for k/M_{p1}=0.1 (0.05)

P. Traczyk, TeV Scale Resonances in CMS

Lepton-photon resonances

- Theoretical motivation:
 - Explaining the Standard Model lepton mass hierarchy through lepton sub-structure
- Signal process: $qq \rightarrow ll^* \rightarrow ll\gamma$
 - Two theory parameters: contact interaction scale Λ and excited lepton mass M*
- Backgrounds
 - Real II vevents: mainly $Z\gamma$, also dibosons, $t\overline{t}$, $\gamma\gamma$
 - Events with jets misidentified as leptons and photons: mainly Z+jets and $W\gamma$ +jets estimated from data
- Analysis: count events with an isolated photon and 2 isolated leptons above a $\mathit{ll}\gamma$ mass cutoff

P. Traczyk, TeV Scale Resonances in CMS

23

EXO-10-016

CMS PAS

Lepton-neutrino resonances

- Theoretical motivation:
 - New charged gauge bosons W' appearing in many SM extensions: LR-symmetric models, Little Higgs models, extra dimensions etc.
- Signal process $qq' \rightarrow W' \rightarrow lv$
- Backgrounds
 - SM W production, $t\overline{t}$, dibosons, Drell-Yan
 - Misidentified leptons in QCD events (mainly electrons)
 - Cosmic-ray muons

$W \rightarrow Iv$ analysis

- Events selected with single electron/muon triggers
- Offline select events with a single isolated lepton
- Kinematic cuts: require lepton p_{T} to satisfy 0.4 < p_{T}/E_{miss}^{T} < 1.5 and $\Delta \phi$ > 2.5
- Additional cut on muon impact parameter d_{xy}<0.02 cm to remove cosmic-ray background
- Count events above an M_{τ} cutoff

$$M_T = \sqrt{2(p_T^l \cdot c)E_T^{miss}(1 - \cos\Delta\phi_{l,\nu})}$$

$W' \rightarrow lv results$

10.1016/j.PhysLetB.2011.02.048 1103.0030 (hep-ex)

tt resonances

Theoretical motivation:

- New bosons with enhanced coupling to top quarks appear in many SM extensions (dynamical symmetry breaking, little higgs, extra dimensions etc)
- Signal process $qq \rightarrow Z' \rightarrow t\overline{t} \rightarrow WbWb \rightarrow lv+3j$
- Backgrounds
 - SM $t\bar{t}$ production, single top production
 - $W/Z/\gamma$ + jets (suppressed by requiring 3+ jets)
 - QCD multijet production (suppressed by lepton isolation requirement)

tt final state reconstruction

- Select events using a single electron/muon trigger
- Require exactly one isolated lepton and 3+ jets
- Analysis in 4x2 event categories:
 - Electron / muon
 - 3 jets (1 b-tag) / 4+ jets (no b-tag) /
 - 4+ jets (1 b-tag) / 4+ jets (2 b-tags)
- Jet b-tagging with secondary vertex reconstruction
 - tuned to give 2% mistag rate on 100 GeV light flavor jets and 60% efficiency for b-jets in $t\bar{t}$ decays in the barrel region
- Simultaneous unbinned maximum likelihood shape fits in all 8 categories to extract limits P. Traczyk, TeV Scale Resonances in CMS 8.07.2011

$Z' \rightarrow tt$ results

Multijet resonances

- Theoretical motivation:
 - RPV SUSY gluino decaying into qqq final states, variations of technicolor models
- Signal process: $pp \rightarrow QQ \rightarrow qqqqqq = 3j + 3j$
- Backgrounds:
 - QCD multijets + combinatorics
 - Each 6 jet final state
 = 20 jet triplets
 - Reduce combinatorial background by requiring $M_{jjj} < \sum_{i=1}^{3} |p_T^{jet}|_i - \Delta$

Multijet resonance results

- No significant deviation from expectations observed
- Limits on σxBR set using binned likelihood shape fits.
 RPV gluino mass excluded up to 270 GeV at 95% C.L.

Summary

- Searches for new resonances in 2010 LHC data give limits reaching into new territory
- 95% C.L. Exclusions for:
 - RPV gluino mass up to 270 GeV
 - W' with SM-like couplings mass up to 1.58 TeV
 - μ^* (e*) with mass up to M=745 (720) GeV for Λ =2 TeV
 - RS $G^* \rightarrow \gamma \gamma$ below 931 (729) GeV for k/M_{Pl}=0.1 (0.05)
 - In dilepton channel: Z'_{ssm} below 1140 GeV, Z_{Ψ} below 887 GeV, RS G* below 1079 (855) GeV for k/MPI=0.1 (0.05)
- Currently analyzing ~20x more data in search for discoveries, stay tuned: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Backup

Z' limits in the c_u/c_d plane

8.07.2011

P. Traczyk, TeV Scale Resonances in CMS

Cosmic muons in W' search

Muon resolution from cosmics

