Recent Developments in Neutrino Physics - from a Theoretical Perspective

Mu-Chun Chen University of California at Irvine

LISHEP 2011 - Workshop on LHC - Present and Future Centro Brasileiro de Pesquisas Fisicas (CBPF) Rio de Janeiro, Brazil, July 5, 2011

Neutrino Mass beyond the SM

- SM: effective low energy theory
- new physics effects suppressed by powers of new physics scale M

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{\mathcal{O}_{5D}}{M} + \frac{\mathcal{O}_{6D}}{M^2} + \dots$$
new physics effects

neutrino masses generated by dim-5 operators -- lowest order higher dimensional operator

$$\frac{\lambda_{ij}}{M}HHL_iL_j \quad \Rightarrow \quad m_\nu = \lambda_{ij}\frac{v^2}{M}$$

 λ_{ij} are dimensionless couplings; *M* is some high scale

- high M \Rightarrow small m_v
- total lepton number and individual family lepton numbers broken
 - lepton mixing expected
 - $\mu \rightarrow e \gamma$ (MEG @ PSI) ; μ e conversion (Mu2e @ Fermilab) ;

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: v_e , v_{μ} , v_{τ}

- mass eigenstates: V₁, V₂, V₃
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

 $V_{e,R}^{\dagger} M_e V_{e,L} = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$ $V_{\nu,L}^T M_{\nu} V_{\nu,L} = \operatorname{diag}(m_1, m_2, m_3)$

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

$$U_{MNS} = V_{e,L}^{\dagger} V_{\nu,L}$$

Leptonic Mixing Matrix

 $\Delta m_a^2, \Delta m_s^2$

• Three neutrino case:

• two mass differences: Δm_a^2 , Δm_s^2

• three mixing angles:

$$\begin{array}{c}\delta,\phi_{12},\phi_{13}\in\\ \varphi^{q},\theta^{s}C^{s},\phi_{13}\in\\ \theta^{q},\theta^{s}C^{s},C^{s},c^{s}\end{array}$$

- three CP phases: $\delta, \ \phi_{12}, \ \phi_{13}$
 - CP violation in neutrino oscillation sensitive ω^{3} Differ phase, δ
 - neutrinoless double beta decay sensitive to Majorana phases, Φ_{12} , Φ_{13}

€

δ

Compelling Evidences of Neutrino Oscillation

Details see Talk by Hiro Tanaka

Atmospheric Neutrinos:

SuperKamiokande (up-down asymmetry, L/E, θ z dependence of μ -like events), K2K

dominant channel: $\nu_{\mu} \rightarrow \nu_{\tau}$

next: MINOS, NOvA, T2K,...

Solar Neutrinos: Homestake, Kamiokande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, KamLAND dominant channel: $\nu_e \rightarrow \nu_{\mu,\tau}$

next: BOREXINO, ...

"Anomalies"?

"Anomalies"? LSND Anomaly: if true \Rightarrow sterile \vee with $\Delta m^2 \sim (0.1-1) eV^2$ dominant channel: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ (3.8 σ excess) re-calculation of pion production cross-section for $\overline{\nu}_e$ background: excess reduced to 3σ A. Zhemchugov (HARP-CDP), ICHEP2010 MiniBoone: R. Van de Water @ Neutrino 2010 neutrino mode: E < 475 MeV: unexplained 3σ e-like excess E > 475 MeV: 2-neutrino fit inconsistent with LSND at 90% CL anti-neutrino mode: E < 475 MeV: small 1.3 σ e-like excess E > 475 MeV: an excess consistent with null at 3%; I.Bigi, 1982; Murayama, 2-neutrino fit consistent with LSND at 99.4% CL Yanagida, 2001 inconsistency between neutrino and anti-neutrino mode \Rightarrow CPT violation?

"Anomalies"?

cation of $\theta_{13} \neq 0$ First Indication of $\theta_{13} \neq 0$

Details see Talk by Hiro Tanaka

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/2011 8

Global Fit Including T2K/MINOS Results

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv: 1106.6028

Global Fit Including T2K/MINOS Results

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028

Global Fit Including T2K/MINOS Results

CBPF, Rio de Janeiro, 07/05/201111

Where Do We Stand?

Latest 3 neutrino global analysis including atm, solar, reactor, LBL (T2K/MINOS)
 experiments:
 Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028

$$P(\nu_a \to \nu_b) = \left| \left\langle \nu_b | \nu, t \right\rangle \right|^2 \simeq \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2}{4E} L \right)$$

Parameter	$\delta m^2/10^{-5}~{\rm eV}^2$	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 heta_{23}$	$\Delta m^2/10^{-3}~{\rm eV}^2$
Best fit	7.58	0.306 (0.312)	0.021 (0.025)	0.42	2.35
1σ range	7.32 - 7.80	0.291 - 0.324 (0.296 - 0.329)	0.013 - 0.028 (0.018 - 0.032)	0.39 - 0.50	2.26 - 2.47
2σ range	7.16 - 7.99	0.275 - 0.342 (0.280 - 0.347)	0.008 - 0.036 (0.012 - 0.041)	0.36 - 0.60	2.17 - 2.57
3σ range	6.99 - 8.18	0.259 - 0.359 (0.265 - 0.364)	0.001 - 0.044 (0.005 - 0.050)	0.34 - 0.64	2.06 - 2.67

Generally: Different global fit analyses assume different error correlations among experiments \Rightarrow different results

Neutrino Mass Spectrum

• two mass orderings compatible with data

The known unknowns:

- How small is θ_{13} ? (v_e component of v_3)
- $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$? (v_3 composition of v)
- neutrino mass hierarchy (Δm_{13}^2)?
- CP violation in neutrino oscillations?
- Majorana vs Dirac?

<u>What's Next?</u> Reactor Exp: Double CHOOZ, Daya Bay, Reno Long Baseline Exp: MINOS, NOvA, T2K, LBNE...

Theoretical Challenges

(i) Absolute mass scale: Why $m_v \ll m_{u,d,e}$?

- seesaw mechanism: most appealing scenario ⇒ Majorana
 - GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
- TeV scale new physics (extra dimension, extra U(1)) \Rightarrow Dirac or Majorana

(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?

- seesaw doesn't explain entire mass matrix w/ 2 large, 1 small mixing angles
- <u>neutrino anarchy</u>: no parametrically small number Hall, Murayama, Weiner (2000)
 - near degenerate spectrum, large mixing
 - predictions strongly depend on choice of statistical measure
- <u>family symmetry</u>: there's a structure, expansion parameter (symmetry effect)
 - leptonic symmetry (normal or inverted)
 - quark-lepton connection ↔ GUT (normal)
- In most part of this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly
 - MiniBoone anti-neutrino mode: excess in low energy region consistent with LSND
 - 4th generation model: (3+3) consistent with experiments including MiniBoone Hou, Lee, arXiv:1004.2359

Small Neutrino Mass: Seesaw Mechanism

• Mixture of light fields and heavy fields

$$\begin{pmatrix} \mathbf{v}_L & \mathbf{v}_R \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{m}_D \\ \mathbf{m}_D & \mathbf{M}_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R \end{pmatrix}$$

 v_{R} : sterile (singlet under ALL gauge groups in SM) $v_{\text{R}}v_{\text{R}}$ mass term allowed

• Diagonalize the mass matrix:

$$m_v \sim m_{light} \sim rac{m_D^2}{M_R} << m_D$$
 $m_{heavy} \sim M_R$

Yanagida, 1979; Gell-Mann, Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1981

• Smallness of neutrino masses suggest a high mass scale

Origin of Mass Hierarchy and Mixing

- In the SM: 22 physical quantities which seem unrelated
- Question arises whether these quantities can be related
- No fundamental reason can be found in the framework of SM
- less ambitious aim ⇒ reduce the # of parameters by imposing symmetries
 - Grand Unified Gauge Symmetry
 - GUT relates quarks and leptons
 - quarks & leptons reside in the same GUT multiplets
 - one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations
 - Family Symmetry
 - relate Yukawa couplings of different families
 - inter-family relations
 - further reduce the number of parameters

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201117

Grand Unification

- Motivations:
 - Electromagnetic, weak, and strong forces have very different strengths
 - But their strengths become the same at 10¹⁶ GeV if there is supersymmetry
 - To obtain

$$\label{eq:mv} \begin{split} m_{\nu} &\sim (\Delta m^2_{atm})^{1/2}, \ m_D \sim m_{top} \\ M_R &\sim 10^{15} \ GeV \end{split}$$

coupling constants run!

Grand Unification

- Candidate GUT groups:
 - SU(5):
 - unify15 known fermions in each generation into a 10 + 5-dim representations
 - can add by hand an extra singlet as ν_{R}

 $\begin{array}{l} 10 = (3,2,1/6) & \sim \begin{bmatrix} u \ u \ u \ d \ d \ d \end{bmatrix} \\ & + (3^*,1,-2/3) \sim & (u^c, u^c, u^c) \\ & + (1,1,1) & \sim e^c \\ \hline 5 & = (3^*,1,1/3) \sim & (d^c, d^c, d^c) \\ & + (1,2,-1/2) \sim \begin{bmatrix} v \\ e \end{bmatrix} \end{array}$

• SO(10):

unify15 known fermions in each generation into a 16-dim spinor representation ⇒ v_R is predicted
 16 = 10 + 5 + 1

charge quantization explained! $16 = (3, 2, 1/6) \sim \begin{bmatrix} u & u & u \\ d & d & d \end{bmatrix}$ u: u: **u** : d : d : + (3^* , 1, -2/3) ~ ($u^c u^c u^c$) **d** : u^c: + ($3^*,\,1,\,1/3$) $\,\sim$ ($d^c~d^c~d^c$) u^c: u^c: $+(1, 2, -1/2) \sim v^{-1}$ dc d^c: d^c: $+(1,1,1) \sim e^{c}$ e : v_e: $+(1,1,0) \sim v^{c}$ ec

Mu-Chun Chen, UC Irvine

LISHEP2011

Origin of Mass Hierarchy and Mixing

- Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)
- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - **Δ**₂₇
 - Q4

Motivation: Tri-bimaximal (TBM) neutrino mixing

What does the data tell us?

• Neutrino Oscillation Parameters $P(\nu_a \rightarrow \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Latest Global Fit (3σ)

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv: 1106.6028

$$\sin^2 \theta_{atm} = 0.42 \ (0.34 - 0.64) \ , \ \sin^2 \theta_{\odot} = 0.306 \ (0.259 - 0.359)$$
$$\sin^2 \theta_{13} = 0.021 \ (0.001 - 0.044)$$

Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

$$\sin^2 \theta_{\text{atm, TBM}} = 1/2$$
 $\sin^2 \theta_{\odot, \text{TBM}} = 1/3$

 $\sin \theta_{13,\text{TBM}} = 0$ Best fit value using atm data only $\Rightarrow \theta_{13} = 0$ Wendell et al (2010)

Models for Tri-bimaximal Mixing

• Neutrino mass matrix

 $M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix} \longrightarrow \begin{array}{c} \sin^2 2\theta_{23} = 1 \\ \theta_{13} = 0 \end{array}$

solar mixing angle NOT fixed

μ-τ symmetry: Petcov; Fukuyama, Nishiura; Mohapatra, Nussinov; Ma, Raidal; ...

S₃: Kubo, Mondragon, Mondragon, Rodriguez-Jauregui; Araki, Kubo, Paschos; Mohapatra, Nasri, Yu; ...

D₄: Grimus, Lavoura; ...

• If $A + B = C + D \implies \tan^2 \theta_{12} = 1/2$ TBM pattern

mass matrix M diagonalized by UTBM

 $U_{TBM}^T M U_{TBM} = diag(m_1, m_2, m_3)$

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

A4: Ma, Rajasekaran; Altarelli, Feruglio; ...

 $Z_3 \times Z_7$: Luhn, Nasri, Ramond; ...

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201122

Double Tetrahedral T´ Symmetry

• Smallest Symmetry to realize TBM \Rightarrow Tetrahedral group A₄ Ma, Rajasekaran (2004)

• complex CG coefficients when spinorial representations are involved

Mu-Chun Chen, UC Irvine

LISHEP2011

CP Violation

• CP violation ⇔ complex mass matrices

$$\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$$

Conventionally, CPV arises in two ways:

- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

A Novel Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

• Complex CG coefficients in $T' \Rightarrow$ explicit CP violation

- real Yukawa couplings, real scalar VEVs
- CPV in quark and lepton sectors purely from complex CG coefficients
- no additional parameters needed ⇒ extremely predictive model!

The Model

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201126

Model Predictions

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

• Resulting neutrino mass matrices

 $M_{RR} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} S_{0} \qquad M_{D} = \begin{pmatrix} 2\xi_{0} + \eta_{0} & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2\xi_{0} & -\xi_{0} + \eta_{0} \\ -\xi_{0} & -\xi_{0} + \eta_{0} & 2\xi_{0} \end{pmatrix} \zeta_{0}\zeta_{0}'v_{u} \Rightarrow \text{all CG are real} \Rightarrow \text{Majorana phases: 0 or } \mathbf{T}$

seesaw mechanism: effective neutrino mass matrix

-- no adjustable parameters-- neutrino mixing from CG coefficients!

$$U_{TBM}^{T} M_{\nu} U_{TBM} = \text{diag}((3\xi_{0} + \eta_{0})^{2}, \eta_{0}^{2}, -(-3\xi_{0} + \eta_{0})^{2}) \frac{(\zeta_{0}\zeta_{0}' v_{u})^{2}}{S_{0}}$$
Form diagonalizable:

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

only vector representations

General conditions for form diagonalizability: M.-C.C., S.F. King, JHEP0906, 072 (2009)

mass sum rule among 3 masses

normal hierarchy predicted

$$m_2^2 - m_1^2 = (\eta_0^4 - (3\xi_0 + \eta_0)^4) \frac{(\zeta_0 \zeta_0' v_u)^2}{S_0} > 0$$

$$m_3^2 - m_1^2 = -24\eta_0 \xi_0 (9\xi_0^2 + \eta_0^2) \frac{(\zeta_0 \zeta_0' v_u)^2}{S_0}$$

Model Predictions

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

Numerical Results

• Experimentally: $m_u: m_c: m_t = \theta_c^{7.5}: \theta_c^{3.7}: 1$ $m_d: m_s: m_b = \theta_c^{4.6}: \theta_c^{2.7}: 1$

b

ck

h

g

• Model Parameters at M_{GUT}:

$$M_{u} = \begin{pmatrix} ig & \frac{1-i}{2}g & 0\\ \frac{1-i}{2}g & g + (1-\frac{i}{2})h & k\\ 0 & k & 1 \end{pmatrix} y_{t}v_{u}$$

$$\begin{pmatrix} 0 & (1+i)h & 0 \end{pmatrix}$$

$$\frac{M_d}{y_b v_d \phi_0 \zeta_0} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & c & 0 \\ b & b & 1 \end{pmatrix}$$

predicting: 9 masses, 3 mixing angles, 1 CF Phase; all agree with exp within 3σ

• CKM Matrix and Quark CPV measures:

CPV entirely from CG coefficients

Numerical Results

Predictions for LFV Radiative Decay

• SUSY GUTs: slepton-neutralino and sneutrino-chargino loop:

Borzumati, Masiero (1986)

- CMSSM: at MGUT, slepton mass matrices flavor blind
- RG evolution: generate off diagonal elements in slepton mass matrices
- dominant contribution: LL slepton mass matrix Hisano, Moroi, Tobe, Yamaguichi (1995)

 $BRji = \frac{\alpha^3}{G_F^2 m_s^8} |(m_{LL}^2)_{ji}|^{\frac{\alpha}{2}} \tan^2 \beta$ good approximation to full evolution effects: $(m_{LL}^2)_{ji} = -\frac{1}{8\pi^2} m_0^2 (3 + A_0^2/m_0^2) Y_{jk}^{\dagger} \log \left(\frac{M_G}{M_k}\right) Y_{ki}$ $m_s^8 \simeq 0.5 m_0^2 M_{1/2}^2 (m_0^2 + 0.6 M_{1/2}^2)^2$ Petcov, Profumo, Takanishi, Yaguna (2003)
Very model dependent

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201131

Predictions for LFV Radiative Decay

• in SUSY SU(5) x T' model:

M.-C.C., Mahanthappa, Meroni, Petcov, under preparation

- degenerate RH masses
- ratios of branching fractions depend on mixing & light neutrino masses

 $Y^+Y = \begin{pmatrix} 0.000122635 & 0.0000589172 & 0.000131458 \\ 0.0000589172 & 0.000941119 & 0.000720549 \\ 0.000131458 & 0.000720549 & 0.000936627 \end{pmatrix}$

predicting

$$Br(\mu \to e\gamma) < Br(\tau \to e\gamma) < Br(\tau \to \mu\gamma)$$

- $m_0 = 50 \text{ GeV}, M_{1/2} = 200 \text{ GeV}, A_0 = 7m_0$:
 - Br($\tau \rightarrow \mu + \gamma$) =1.38 x 10⁻⁹
 - Br($\tau \rightarrow e + \gamma$) = 4.59 x 10⁻¹¹
 - Br($\mu \rightarrow e + \gamma$) = 9.23 x 10⁻¹²

Sakharov's Conditions

• Necessary conditions for Bayogenesis [Matter-Antimatter Asymmetry]

- baryon number violation
- CP violation
- out-of-equilibrium
- CP violation in quark sector gives too small baryon number asymmetry
- neutrino oscillation opens up new possibility
 - ► leptogenesis: require leptonic CP phase Fukugita, Yanagida, 1986

- RH heavy neutrino decay: Fukugita, Yanagida, '86; Luty, '92; Covi, Roulet, Vissani, '96; Flanz et al, '96; Plumacher, '97; Pilaftsis, '97; Buchmuller, Plumacher, '98
 - quantum interference of tree-level & one-loop diagrams \Rightarrow primordial lepton number

• asymmetry (RH neutrino Ni decay into entropy of the diagonal matrix of the light neutrino 2006 masses, M is the diagonal matrix of the right-handed neutrino masses and U

$$\boldsymbol{\epsilon_{i\alpha}} = \frac{\left[\Gamma(N_1 \to \ell_{\alpha} H) - \Gamma(N_1 \to \overline{\ell}_{\alpha} \overline{H})\right]}{\sum_{\alpha} \left[\Gamma(N_1 \to \ell_{\alpha} H) + \Gamma(N_1 \to \overline{\ell}_{\alpha} \overline{H})\right]}$$

$$= -\frac{3M_i}{16\pi v^2} \frac{\operatorname{Im}(\sum_{\beta\rho} m_{\beta}^{1/2} m_{\rho}^{3/2} U_{\alpha\beta}^* U_{\alpha\rho} R_{i\beta} R_{i\rho}^{\text{be se}})}{\sum_{\beta} m_{\beta} |R_{i\beta}|^2}$$

• EW non-perturbative effects: $\Delta L \rightarrow \Delta B$

Mu-Chun Chen, UC Irvine

matrix and the charged lepton mass matrix are diagonal, the neutrino Dirac
Yukawa matrix can be written as
$$h = V_R^{\mu^{\dagger}} diag(h_1, h_2, h_3)V_L^{\bullet}$$
. Therefore,
the low energy CP Rielation in/the Unpth?sector can arise from section RM sector
left-handed sector through V_L^{ν} , the right-handed sector through V_R^{ν} , or from
both. From $hhR = V_L^{\nu^{\dagger}} diad(h_1^2, h_2^2, h_2^2) V_L^{\nu_2} - M_L^{\lambda^{\dagger}/2} H_L^{\mu^{\dagger}/2} H$

is the MNS matrix. The orthogonal matrix R is defined by this equation as $R = vM^{-1/2}hUm^{-1/2}diag(map m_3;m_3)$ the right distribution masses)

$$\begin{array}{l} \text{LISHEP2011} \\ \epsilon_{\alpha} = -\frac{3M_{1}}{16\pi v^{2}} \frac{\text{Im}(\sum_{\beta\rho} m_{\beta}^{1/2} m_{\rho}^{3/2} U_{\alpha\beta}^{*} U_{\alpha\rho} R_{1\beta} R_{\alpha} \mathcal{B} \mathcal{P} \mathcal{F}, \ \text{Rio de Janeiro, } 07/05/201134 \\ \hline \sum_{\beta} m_{\beta} |R_{1\beta}|^{2} \end{array} . \end{array}$$

The contribution of each of these individual asymmetries to the total asym-

Leptogenesis ↔ Low Energy Observables

- three flavors distinguished by Yukawa interactions:
- Y_{τ} , Y_{μ} , Y_{e} equilibrium at temperatures below 10¹², 10⁹, 10⁶ GeV, respectively
- Flavor effect: Abada, Davidson, Josse-Michaux, Losada, Riotto, 2006; Nardi, Nir, Roulet, Racker, 2006
 - T ~ $M_1 > 10^{12}$ GeV: Y_e, Y_µ, Y_T out of equilibrium \Rightarrow 1 flavor regime

$$\epsilon_{i} \equiv \sum_{\alpha} \epsilon_{i\alpha} = -\frac{16\pi v^{2}}{16\pi v^{2}} \frac{\sum_{\beta} m_{\beta} |R_{i\beta}|^{2}}{\sum_{\beta} m_{\beta} |R_{i\beta}|^{2}} \xrightarrow{\text{Observables}}_{\text{Output depend on high}} \text{energy phases (R)}$$

presence of low energy leptonic CPV (neutrino oscillation, neutrinoless double beta decay) real R, complex U: non-vanishing low energy CPV (h) vanishing leptogenesis

Leptogenesis ↔ Low Energy Observables

- leptogenesis at T ~ $M_1 < 10^{12}$ GeV:
 - flavors distinguishable ($T_{eq} = Y^2 M_{pl}$) \Rightarrow non-universal wash-out effects
 - T ~ M₁ ~(10⁹ 10¹²) GeV: Y_e, Y_µ out of equilibrium; Y_T in equilibrium
 - 2 flavor regime: ($\epsilon_e + \epsilon_\mu$), ϵ_τ evolve independently
 - T ~ M₁ ~(10⁶ 10⁹) GeV: Y_e, out of equilibrium; Y_µ, Y_T in equilibrium
 - 3 flavor regime: ϵ_e , ϵ_μ , ϵ_τ evolve independently
 - asymmetry associated with each flavor

Connection in Specific Models

- models for neutrino masses:
 - additional symmetries or textures
 - reduce the number of parameters \Rightarrow connection can be established
- texture assumption (may be realized by symmetry)
 - models with 2 RH neutrinos (2 x 3 seesaw) Kuchimanchi & Mohapatra, 2002
 - sign of baryon asymmetry \leftrightarrow sign of CPV in v oscillation Frampton, Glashow, Yanagida, 2002
- all CP come from a single source
 - models with spontaneous CP violation:
 - minimal LR model: only 1 physical leptonic CP phase M.-.C.C, Mahanthappa, 2005
 - SM + vectorial quarks + singlet scalar Branco, Parada, Rebelo, 2003
 - SCPV in SO(10): <126>B-L complex Achiman, 2004, 2008
 - SUSY SU(5) x T' Model: M.-.C.C, Mahanthappa, 2009
 - geometrical origin of CP violation \Rightarrow only lepton Dirac CP phase $\neq 0$

M.-C.C, K.T. Mahanthappa, arXiv:1107.xxxx

- TBM from broken discrete symmetries through type-I seesaw E. Jenkins, A. Manohar, 2008
- exact TBM: $\sin \theta_{13} = 0 \Rightarrow J_{CP}^{lep} \propto \sin \theta_{13} = 0$ CP violation through Majorana phases: α_{21}, α_{31}
- no leptogenesis as $Im(hh^{\dagger}) = 0$
- true even when flavor effects included

In usual seesaw realization: $R = diagonal \Rightarrow \epsilon_{i\alpha} = 0$

Choubey, King, Mitra, 2010

• SU(5) x T' model: corrections to TBM from charged lepton sector

 $R = v M^{-1/2} U_{\nu,R} M_D U_{\text{TBM}} m^{-1/2} \rightarrow \text{real, non-diagonal (12) block}$

Dirac CPV phase \Rightarrow non-vanishing lepton number asymmetry

Radiatively induced RH neutrino mass splitting \Rightarrow resonant enhanced asymmetry \Rightarrow sufficient for observed baryon number asymmetry

Dirac phase the only non-vanishing leptonic CPV phase ⇒ connection between leptogenesis & low energy CPV

Sum Rules: Quark-Lepton Complementarity

Quark Mixing

Lepton Mixing

mixing parameters	best fit	3 σ range	mixing parameters	best fit	3 σ range	
θ ^q ₂₃	2.36°	2.25° - 2.48°	θ ^e ₂₃	42.8°	35.5° - 53.5°	
$\mathbf{\theta}^{q}_{_{12}}$	12.88°	12.75° - 13.01°	θ ^e ₁₂	34.4°	31.5° - 37.6°]
θ ^q ₁₃	0.21°	0.17º - 0.25º	θ ^e ₁₃	5.6°	≤ 12.5°	

measuring leptonic mixing parameters to the precision of those in quark sector

• QLC-I

(BM)

 $\theta_{\rm c} + \theta_{\rm sol} \simeq 45^{\circ}$

Raidal, '04; Smirnov, Minakata, '04

 $\mathbf{\theta}^{q}_{23} + \mathbf{\theta}^{e}_{23} \cong 45^{\circ}$

improved $\delta \theta_{12}$ from SNO+, SuperK possible

• QLC-II (TBM) $\tan^2\theta_{sol} \approx \tan^2\theta_{sol,TBM} + (\theta_c/2) * \cos \delta_e$

 $\theta^{e}_{13} \cong \theta_{c} / 3\sqrt{2}$ Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa

 testing these sum rules could be a more robust way to distinguish different models

Other Possibilities

• Tri-bimaximal Mixing Accidental or NOT? Albright, Rodejohann (2009); Abbas, Smirnov (2010)

- current data precision: TBM can be accidental \Rightarrow open up other possibilities
- Golden Ratio for solar angle

 $\tan^2 \theta_{sol} = 1/\Phi^2 = 0.382$, (1.4 σ below best fit) $\Phi = (1 + \sqrt{5}) / 2 = 1.62$

• Dodeca Mixing Matrix from D₁₂ Symmetry

leading order: $\theta_{c} = 15^{\circ}, \ \theta_{sol} = 30^{\circ}, \ \theta_{atm} = 45^{\circ}$ $12 = 360^{\circ} / 30^{\circ} \Rightarrow Z_{12}$ $15^{\circ} \Rightarrow Z_{2}$ $Z_{12} \times Z_{2} = D_{12}$

 $\theta_{c} + \theta_{sol} = 45^{\circ}$ (not from GUT symmetry)

Datta, Ling, Ramond, '03; Z2 x Z2: Kajiyama, Raidal, Strumia, '07; A5: Everett, Stuart, '08; ...

$$V_{\rm PMNS} = U_l^{\dagger} U_{\nu} = \begin{pmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} & 0\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

breaking of D₁₂:

$$\theta_{\rm c} = 15^{\circ} \rightarrow 13.4^{\circ}$$

$$\boldsymbol{\theta}_{sol} = 30^{\circ} + O(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{13} = O(\boldsymbol{\epsilon})$$

TeV Scale Seesaw Models

For a recent review: M.-C. C., J.R. Huang, arXiv:1105.3188

• Without new interactions:

- type-I seesaw Kersten, Smirnov, 2007
 - RH neutrino produced by gauge interaction
 - production cross section suppressed by heavy-light mixing
 - generally decouple from collider physics
- type-II seesaw
 - TeV scale doubly charged Higgs ⇔ small couplings
 - unique signatures: $\Delta^{++} \rightarrow e^+ e^+$, $\mu^+ \mu^+$, $\tau^+ \tau^+$
 - produced through gauge interaction
 - independent of light-heavy mixing
 - 300 fb⁻¹ for $M_{\Delta} \sim 600$ GeV at LHC

Perez, Han, Huang, Li, Wang, '08; ...

TeV Scale Seesaw Models

• With new interactions:

- SUSY LR Model:
 - TeV Scale $W_R \Leftrightarrow$ small Yukawa
 - tested via searches for W_R

Azuleos et al 06; del Aguila et al 07, Han et al 07; Chao, Luo, Xing, Zhou, '08; ...

- production independent of light-heavy mixing
- LHC: $W_{\text{R}}\,$ up to (3-4) TeV , v_{R} in (100-1000) GeV range
- More Naturally: inverse seesaw or higher dimensional operators or Extra Dim
 - SO(10): adjoint fermions + inverse seesaw
 - inverse seesaw
 - adjoint SU(5)
 - higher dimensional effective operators
 - TeV Scale Extra Dimension

TeV Scale Seesaw and Non-anomalous U(1)

- anomaly cancellation: relate flavorful fermion charges
 - \Rightarrow predict mass hierarchy and mixing
- neutrinos can either be Dirac or Majorana
- TeV scale Z': probing flavor sector at LHC

Prediction for Sparticle Spectrum

M.-C. C., J.-R. Huang (2010)

predict testable (RG invariant) mass sum rules in AMSB among sparticles at colliders

$$\bar{m}_{Q_{i}}^{2} + \bar{m}_{u_{i}^{c}}^{2} + \bar{m}_{H_{u}}^{2} = (m_{Q_{i}}^{2} + m_{u_{i}^{c}}^{2} + m_{H_{u}}^{2})_{AMSB} (i = 1, 2, 3)$$

$$\bar{m}_{Q_{i}}^{2} + \bar{m}_{d_{i}^{c}}^{2} + \bar{m}_{H_{d}}^{2} = (m_{Q_{i}}^{2} + m_{d_{i}^{c}}^{2} + m_{H_{d}}^{2})_{AMSB} (i = 1, 2, 3)$$

$$\bar{m}_{L_{i}}^{2} + \bar{m}_{e_{i}^{c}}^{2} + \bar{m}_{H_{d}}^{2} = (m_{L_{i}}^{2} + m_{e_{i}^{c}}^{2} + m_{H_{d}}^{2})_{AMSB} (i = 1, 2, 3)$$

functions of gauge couplings, Yukawa couplings and gravitino mass (m_{3/2})

Flavor Physics at the Collider

Constraints on Extra Dimension

• Set-up: 1 large extra dimension

Machado, Nunokawa, Zukanovich Funchal, 2011

- 3 RH neutrinos propagate in bulk
- SM lepton doublets & Higgs: confined to SM brane
- naturally small Dirac mass due to volume suppression
- mixing between active neutrinos and KK modes:

$$P(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L) = \left| \sum_{i,j,k} \sum_{N=0}^{\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0N)*} W_{kj}^{(0N)} \exp\left(i\frac{\lambda_{j}^{(N)2}L}{2Ea^{2}}\right) \right|^{2}$$

- shift in oscillation minima
- global reduction of survival probabilities
- extra wiggles

• constraints from neutrino experiments

Machado, Nunokawa, Zukanovich Funchal, 2011

current table top experiment: $a < 2 \times 10^{-4} m$

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201147

Curing FCNC Problem: Family Symmetry vs MFV

- low scale new physics severely constrained by flavor violation
- Minimal Flavor Violation
 - assume Yukawa couplings the only source of flavor violation
- Example: Warped Extra Dimension
 - wave function overlap \Rightarrow naturally small Dirac neutrino mass
 - non-universal bulk mass terms (c) \Rightarrow FCNCs at tree level $\Rightarrow \Lambda > O(10)$ TeV

U

- FCNCs: present even in the limit of massless neutrinos
 - tree-level: μ -e conversion, $\mu \rightarrow 3e$, etc
- charged current
 - one-loop: $\mu \rightarrow e + \gamma$, $\tau \rightarrow e + \gamma$, $\tau \rightarrow \mu + \gamma$
- fine-tuning to get large mixing and mild mass hierarchy for neutrinos

(us)

Cirigliano, Grinstein, Isidori, Wise (2005)

D'Ambrosio, Giudice, Isidori, Strumia (2002);

$$\psi_{(0)} \sim e^{(1/2-c)ky}$$

Curing FCNC Problem: Family Symmetry vs MFV

• Two approaches:

Minimal Flavor Violation in RS

quark sector: A. Fitzpatrick, G. Perez, L. Randall (2007) lepton sector: M.-C.C., H.B. Yu (2008)

 $C_e = aY_e^{\dagger}Y_e, \ C_N = dY_{\nu}^{\dagger}Y_{\nu}, \ C_L = c(\xi Y_{\nu}Y_{\nu}^{\dagger} + Y_eY_e^{\dagger})$

- T' symmetry in the bulk for quarks & leptons: M.-C.C., K.T. Mahanthappa, F. Yu (PLB2009); A4 for leptons: Csaki, Delaunay, Grojean, Grossmann
 - TBM neutrino mixing: common bulk mass term, no tree-level FCNCs
 - TBM mixing and masses decouple: no fine-tuning
 - realistic masses and mixing angles in quark sector
 - no tree-level FCNCs in lepton sector and 1-2 family of quark sector
- Family Symmetry: alternative to MFV to avoid FCNCs in TeV scale new physics
 - many family symmetries violate MFV ⇒ possible new FV contributions

Conclusions

• QLC:

- current data consistent with TBM mixing
- finite group family symmetry T´ x SU(5):
 - group theoretical origin of mixing
 - CP violation from complex CG coefficients

quark CP phase: $\gamma = 45.6$ degrees $\delta = 227$ degrees

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta \qquad \qquad \theta_{13} \simeq \theta_c / 3\sqrt{2}$$

- More precise measurements of oscillation parameters important for pinning down the underlying new physics
- New interactions (gauge symmetry, extra dimensions, SUSY): may probe flavor sector at colliders
- If T2K result holds up \Rightarrow large deviation from TBM
 - Future data will tell!

Mu-Chun Chen, UC Irvine

LISHEP2011

Mu-Chun Chen, UC Irvine

LISHEP2011

CBPF, Rio de Janeiro, 07/05/201151