

Recent Developments in Neutrino Oscillations

H. A. Tanaka (UBC/IPP)

LISHEP, 4-9 July 2011, Rio de Janeiro, Brazil

Mass and Mixing:

Opportunities following discovery of non-zero neutrino mass

Mass:

- Neutrino masses very small (<1 eV)
- Neutrinos are unique in the SM in having the option to have:
 - Dirac mass (like quarks) $\mathcal{L}_D = -m_D(\overline{\nu}_L \nu_R + \overline{\nu}_R \nu_L)$
 - Majorana mass (self-conjugate) $\mathcal{L}_M = -m_M (\overline{\nu}_R \nu_R^c + \overline{\nu}_R^c \nu_R)$

Mixing:

- also know that the neutrinos "mix" like quarks
- flavor/mass states related by non-trivial unitary transformation

The Big Questions:

Neutrinos play a role in outstanding problems:

- Key to persistent cosmological problems?
 - Their mixing (and resulting CP violation) may be related to the matter/ anti-matter asymmetry of the universe (leptogenesis)
- Window to physics at a very high scale?
 - Their mass may be of a completely different nature from other particles (Majorana mass).
 - "Seesaw" mechanism relates small neutrino masses to 10¹⁵ eV scale
- "Standard" mixing/mass of neutrinos pose their own question
 - Why is the mixing so large, different from quarks?
 - Why are neutrino masses small compared to other leptons/quarks?
 - Is there a pattern to the mixing/masses?

Key Questions

- Are neutrinos their own antiparticles?
 - Do neutrinos have Majorana masses?
 - Key ingredient to the "see-saw" and Leptogensis

What is the mixing/mass structure of neutrinos?

- Is there CP violation in the lepton sector?
 - Gatekeeper: is $\theta_{13} \neq 0$?
- Is there structure/pattern to neutrino masses?
 - Need precision measurements

Is there more?

• sterile neutrinos? CPT violation? . . .

Probing Mass/Mixing

Probing Mass/Mixing

Neutrino Oscillations

 Neutrinos produced in weak decays are linear combinations of mass/energy eigenstates

$$|
u_{lpha}
angle = \sum_{i} U^{*}_{lpha i} |
u_{i}
angle$$

Time evolution: state acquires component of another neutrino flavor

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} -4\Sigma_{i>j} \Re(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin^2[1.27\Delta m^2_{ij}(L/E)] +2\Sigma_{i>j} \Im(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin^2[2.54\Delta m^2_{ij}(L/E)]$$

- Amplitudes determined by mixing parameters (Uai)
- Wavelengths determined by mass differences Δm^2_{ij} (L in km, E in GeV)

Only positive indications of neutrino mass and mixing thus far.

Experiment

Disappearance:

• fewer interactions in original flavor

Appearance:

interactions in new flavor

Amplitudes: mixing matrix U_{ij}

 E_{ν} dependence: mass differences Δm_{ij}^2

Typically, experiments have detectors at L=0 to assess "initial state"

Current Knowledge

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \times \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij} \\ s_{ij} = \sin \theta_{ij} \\ 0 & \frac{c_{23} & s_{23}}{0 & -s_{23} & c_{23}} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & \frac{s_{13}e^{-i\delta}}{0} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The mixing matrix:

$$|U_{\rm MNSP}| \sim \left(\begin{array}{ccc} 0.8 & 0.5 & 0\\ 0.4 & 0.6 & 0.7\\ 0.4 & 0.6 & 0.7 \end{array}\right)$$

 $\sin^2 \theta_{12} = 0.304^{+0.022}_{-0.016}$ $\sin^2 2\theta_{13} < 0.19$ $\sin^2 \theta_{23} = 0.50^{+0.07}_{-0.06}$

Is $\theta_{13} \neq 0$? Is θ_{23} maximal (45°)? Is $\delta \neq 0$ (CP violation)?

Current Knowledge

θ_{23} and θ_{13}

θ_{23} : Possibly maximal mixing

- Precision measurement (v_{μ} disappearance)
- Is the oscillation to v_{τ} ? (v_{τ} appearance)

θ_{13} : Last unmeasured mixing angle

- 3 flavor mixing allows CP violation if $\delta \neq 0$ $\nu_{\alpha} \rightarrow \nu_{\beta} \neq \bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}$
- Two methods for detecting θ_{13} :
 - $\overline{\nu}_e$ disappearance with reactor source $P(\nu_e \rightarrow \nu_e) \sim 1 - \sin^2 2\theta_{13} \sin^2 \Delta m_{23}^2 (L/E)$

•
$$v_{\mu}$$
 from accelerator
 $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \times \sin^{2} \Delta_{31}$ B. Kayser, NuSAG Mar 2006
 $+ \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \times \sin \Delta_{31} \sin \Delta_{21} \cos(\Delta_{32} \pm \delta)$
 $+ \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \cos^{2} \theta_{13} \times \sin^{2} \Delta_{21}$

 $= 1.2 \left(\Delta m_{ij} (L/E) \right)$

 Δ_{ii}

Tuesday, July 5, 2011

NEAR

FAR

MINOS:

1 kt near detector + 4.5 kt far detector

- scintillator (1 cm x 4.1 cm strips) tracker/ calorimeter in alternating U/V planes
- interspersed with magnetized steel plates (1")

~3 GeV v_{μ} beam, L=735 km far detector

v_{μ} CC/NC separation

- CC/NC discrimination based on event length, transverse profile, energy deposition
- Improvements to shower energy estimator and selection for v_{μ} CC with short muons
- Energy spectrum extrapolated to far detector using near detector data.

slides based on FNAL Users' Meeting R. B. Patterson (6/2011)

Injector Neutrino

Search

Oscillation

Beam to NuMI:

Total NuMI protons to 00:00 Monday 20 June 2011

Today's result

v_{μ} disappearance

• Precision measurements of parameters: $\Delta m_{atm}^2 = 2.32^{+0.12}_{-0.08} \times 10^{-3} \text{eV}^2/c^4$ $\sin^2 2\theta_{atm} > 0.90 \ (90\% \text{ C.L.})$

PRL 106, 181801 (2011)

 Observed spectrum shows energydependent deficit relative to null oscillation expectation

 alternate mechanisms (decay/ decoherence) strongly ruled out

Tuesday, July 5, 2011

v_{μ} disappearance

• Precision measurements of parameters: $\Delta m_{atm}^2 = 2.32^{+0.12}_{-0.08} \times 10^{-3} \text{eV}^2/c^4$ $\sin^2 2\theta_{atm} > 0.90 \ (90\% \text{ C.L.})$

PRL 106, 181801 (2011)

 Observed spectrum shows energydependent deficit relative to null oscillation expectation

 alternate mechanisms (decay/ decoherence) strongly ruled out

\bar{v}_{μ} disappearance

 Produce anti-neutrino-enhanced beam by switching the polarity of the horn

$$\begin{array}{ccc} p + A \to & \pi^- + X \\ & \hookrightarrow \mu^- + \bar{\nu}_\mu \end{array}$$

 Suppress wrong-sign (neutrino) interactions by sign selection in the detector.

v_{τ} appearance

 v_{μ} disappearance $(v_{\mu} \rightarrow v_x)$: interpretation is $x = \tau$

OPERA:

- LBL experiment using CERN SPS to produce beam above v_{τ} threshold

1000 um

Super-Kamiokande:

- Detect v_{τ} production with NN using
 - particle identification, visible energy
 - event topology variables, decay electrons
- Excess seen where v_{μ} observed to disappear

 $\gamma + \gamma$

θ_{13}

MINOS v_{μ} - $\rightarrow v_e$

charge

50

40 30

20

10

N

110

slides based on FNAL seminar L. Whitehead (6/2011)

- v_e /NC discrimination
- "Library Event Matching"
 - Compare strip location/charge of event to a library of O(10⁷) signal/background events
 - Select N events based on likelihood that events came from the same underlying energy deposition.

Three discriminants:

- Fraction of signal/background matches
- Charge overlap with matches
- EM fraction in matches

Combined into ANN with energy

106

04

102

100

98

96

MC

100

105

z position (plane)

transverse position (strip)

MINOS $v_{\mu} \rightarrow v_{e}$

- v_e /NC discrimination
 - "Library Event Matching"
 - Compare strip location/charge of event to a library of O(10⁷) signal/background events
 - Select N events based on likelihood that events came from the same underlying energy deposition.

Three discriminants:

- Fraction of signal/background matches
- Charge overlap with matches
- EM fraction in matches

Combined into ANN with energy

$\mathsf{MINOS} \ \nu_{\mu} \longrightarrow \nu_{e}$

• v_e/NC discrimination

- "Library Event Matching"
 - Compare strip location/charge of event to a library of O(10⁷) signal/background events
 - Select N events based on likelihood that events came from the same underlying energy deposition.

Three discriminants:

 Fraction of signal/background matches

L. Whitehead (6/2011)

- Charge overlap with matches
- EM fraction in matches

Combined into ANN with energy

Background:

- Vary composition of ND events by changing beam configuration (Ε_ν spectrum)
- Fit for contribution of each background component in the standard beam
- MC only estimate would have much larger uncertainty (5.7% vs. ~20%)

Signal Region

• Events with LEM>0.6:

Bkg. Expectation: 49.5±7.0±2.8 events **Observe: 62 events**

Signal Extraction:

Signal

FD Data

Far Detector Best Fit (0.7 < LEM < 0.8)

Reconstructed Energy (GeV)

MINOS PRELIMINARY

3

20

15

- Fit LEM x Energy simultaneously
- Best fit gives $\sin^2 2\theta_{13} = 0.040$

L=295 km E~600 MeV $1.27 \times \Delta m_{23}^2 \frac{L}{E} \sim \frac{\pi}{2}$

Kamiok

Produce intense beam of ~600 MeV v_{μ}

okai

- 295 km away from source, look for
 - v_e appearance due to $\theta_{13} \neq 0$, $v_{\mu} \rightarrow v_e$
 - v_{μ} disappearance due to $v_{\mu} \rightarrow v_{\tau}(\theta_{23})$

at Super Kamiokande (SK) "far" Detector

Off-Axis Beam Concept

- Neutrinos produced with wide energy spectrum
- Can we "focus" neutrinos to the right energy (600 MeV@295 km)?
- No, but we can exploit kinematics.

 $p(30 \text{GeV}) + \text{C} \rightarrow \pi^+ + X$

 $\hookrightarrow \overline{\nu_{\mu}} + \overline{\mu^{+}}$

- Tune angle to maximize flux at oscillation maximum
- Reduce high energy neutrinos

Off-Axis Beam Concept

- Neutrinos produced with wide energy spectrum
- Can we "focus" neutrinos to the right energy (600 MeV@295 km)?
- No, but we can exploit kinematics.

 $p(30 \text{GeV}) + \text{C} \rightarrow \pi^+ + X$

 $\hookrightarrow \overline{\nu}_{\mu} + \overline{\mu}^{\top}$

- Tune angle to maximize flux at oscillation maximum
 - Reduce high energy neutrinos

Current Status

- Design: 750 kW, (145 kW achieved thus far)
- Accumulated 1.43x10²⁰ POT till March 2011
 - accelerator operations expected resume at end of the year

Delivered proton#

Proton per pulse

On-axis: (INGRID)

"GRID" of neutrino detectors:

- Fe/Scintillator trackers
- event rate allows ~daily monitor of profile
- Measure center of beam with profile of interaction rate module-to-module
- Beam axis is within 1 mrad of nominal

Observed rate relative to expectation is $R = 1.036 \pm 0.028(\text{stat})^{+0.044}_{-0.037}(\text{det. sys.}) \pm 0.039(\text{phys. model})$

Super Kamiokande

- EM radiation by charged particles with $v > c_n$
- ~11K photomultiplier tubes
 - 22.5 kiloton fiducial volume
 - sensitive to single photons (40% coverage)
- Particle can be identified by ring profile
 - "muon" vs. e/γ (EM shower)
 - e/π^0 separation by ring search

Super Kamiokande

- EM radiation by charged particles with $v > c_n$
- ~11K photomultiplier tubes
 - 22.5 kiloton fiducial volume
 - sensitive to single photons (40% coverage)
- Particle can be identified by ring profile
 - "muon" vs. e/γ (EM shower)
 - e/π^0 separation by ring search

Super Kamiokande

- ~11K photomultiplier tubes
 - 22.5 kiloton fiducial volume
 - sensitive to single photons (40% coverage)
- Particle can be identified by ring profile
 - "muon" vs. e/γ (EM shower)
 - e/π^0 separation by ring search

Analysis:

Error Source	Error (%)
Neutrino flux	±8.5
Neutrino interaction	±14.0
Near detector	+5.6/-5.2
Far detector	±14.7
ND statistics	±2.7
Total	+22.8/-22.7

- Flux predicted using MC tuned with
 - beam monitors
 - particle production (e.g. NA61)
 - secondary interactions
- Detailed neutrino interaction generator predicts event rates/final states
- Observed neutrino rate at near detector scales prediction
 - Extrapolation to far detector incorporates uncertainties in near/ far flux and neutrino interactions
 - Some cancellation of uncertainties.

v_e Selection

reject multi ring events

v_e Selection

reject multi ring events

reject μ -ring events, μ decay electrons

v_e Selection

reject multi ring events

reject μ -ring events, μ decay electrons

reject π^0 events

Final Event Sample: 72/

 $\cos\theta_{\text{beam}}$

- 6 ve candidates observed
- 1.5±0.3 events expected for background
- 0.7% probability for background to fluctuate to 6 or more events (2.5σ)
 - (submitted to/accepted by PRL)

Comparison of Results

Both experiments report an excess of events consistent with $\theta_{13}>0$

- MINOS: $\theta_{13}=0$ outside of 89% confidence level region
- T2K: P=0.7% for background (θ_{13} =0) to fluctuate to 6 or more events

Reactor Experiments

from Bempograd, Gratta, Vogel

Reactor anti-neutrinos:

- Intense source of $\overline{\nu}_e$ from multi-GW nuclear reactors (U/Pu decay chain)
- θ_{13} based on disappearance measurement $P(\nu_e \rightarrow \nu_e) \sim 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta_{31}^2 L}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin \frac{\Delta_{21}^2 L}{4E}$

e β decay/n capture o cancel uncertainties sappearance measurement

*table courtesy of K. Heeger Table courtesy of K. Heeger Double Chooz Daya Bay RENO

Experiment*	Thermal Power (GW)	L (near/far) (meters)	Depth (meters)	Target mass (tons)	Start (year)	90% CL (3 years)
Double Chooz	8.6	410/1050	115/300	8.8/8.8	2012/2011	0.03
RENO	17.3	290/1380	120/450	20/20	2011/2011	0.02
Daya Bay	17.4	(353/481)/(1985/1613)	260/910	40x2/80	2011/2012	0.008

NOvA

- 15.7 m-long extruded PVC cells filled with liquid scintillator (+WLS/APD) to make 15 kt detector
- 14 mrad off-axis with NuMI: $E_v \sim 2$ GeV, L=810 km
- Higher energy gives greater sensitivity to matter effects (~30% vs. ~10% at T2K)
- Allows determination of mass hierarchy
- NDOS operational, far detector under construction.
 - Far detector operation starts 2013

NOvA

- 15.7 m-long extruded PVC cells filled with liquid scintillator (+WLS/APD) to make 15 kt detector
- 14 mrad off-axis with NuMI: $E_v \sim 2$ GeV, L=810 km
- Higher energy gives greater sensitivity to matter effects (~30% vs. ~10% at T2K)
- Allows determination of mass hierarchy
- NDOS operational, far detector under construction.
 - Far detector operation starts 2013

NOvA

- 15.7 m-long extruded PVC cells filled with liquid scintillator (+WLS/APD) to make 15 kt detector
- 14 mrad off-axis with NuMI: $E_v \sim 2$ GeV, L=810 km
- Higher energy gives greater sensitivity to matter effects (~30% vs. ~10% at T2K)
- Allows determination of mass hierarchy
- NDOS operational, far detector under construction.
 - Far detector operation starts 2013

Towards CP Violation:

Future options look to

- O(Megawatt) proton accelerators
- O(Megaton) detectors

LBNE: FNAL --- Homestake main options

$J-PARC \rightarrow X$

Outlook

There is much to learn about neutrinos!

- Neutrinos oscillations allow us to study:
 - what are their mixing parameters? Is θ_{23} maximal, $\theta_{13} \neq 0$?
 - θ_{23} precision will increase with NOvA and T2K
 - are we seeing the first indications of θ_{13} >0?
 - Is there CP violation in the lepton sector? ($\theta_{13}, \delta \neq 0$)
- We also hope to learn
 - what are their masses (as opposed to mass differences)?
 - are they there their own antiparticles (are they Majorana)?
- This may in turn shed light on:
 - what determines the mixing/mass structure of quarks and leptons?
 - why is the universe matter dominated?

Expect a leap forward in the coming years!