Higgs Searches at ATLAS

Liron Barak (Weizmann Institute of Science) on behalf of the ATLAS collaboration

Outline

- LHC and ATLAS
- SM Higgs Boson
 - Production
 - Decay modes
 - Combination
- MSSM Higgs bosons
- Summary

LHC and ATLAS

• In 2010:

- Proton proton collisions
- ATLAS recorded 45 pb⁻¹ of integrated luminosity at Vs=7 TeV
- Depending on data quality selections, 35 pb⁻¹ or more used in analysis
- In 2011:
 - Running since early March with √s=7 TeV
 - >1 fb⁻¹ data has been recorded
 - Hope for 4-5 fb⁻¹ of integrated luminosity before the end of the year
- Beyond:
 - LHC will run in 2012
 - Then, long shutdown and run at higher energy.

SM Higgs Boson - Production

SM Higgs Boson - Decay

Decay modes:

- H -> WW
 - Dominant in intermediate and high mass regions
- H -> ZZ
- Η -> γγ
 - Low BR
 - Relevant in low mass region
 - Clean signature
- H -> bb (not in this talk)
 - Dominant in low mass region
 - Very challenging (high QCD background)
- H -> $\tau\tau$ (not in this talk)
 - Low production rate
 - High Z -> ττ background
- The Challenge:
- <1 detectable Higgs boson per 10¹² collisions

Decay modes:

- H -> WW
 - Dominant in intermediate and high mass region
- H -> ZZ
- Η -> γγ
 - low BR
 - Important in low mass region
 - Clean signature
- H -> bb (not in this talk)
 - Dominant in low mass region
 - Very challenging (high QCD bg)
- H -> $\tau\tau$ (not in this talk)
 - Low production rate
 - High Z -> $\tau\tau$ background

The Challenge:

<1 detectable Higgs boson per 10¹² collisions

H -> γγ (data 2011):

- Mass range 110-140 GeV
- Preselection cuts:
 - 2 isolated photons with pT > 25 GeV and |η| < 2.37, fulfilling tight shower shape requirements
 - -1γ with pT > 40 GeV
 - 100 < Mγγ < 150 GeV

7

H -> γγ (data 2011):

- Main backgrounds:
 - Reducible (γ-jet and Jet-jet)

Irreducible (γγ and Drell-Yan)

- Strategy to estimate:
 - Double sideband method
 - Electron photon fake rate from $Z \rightarrow ee$
- Limit: The observed excluded σ ranges from 4.2 to 15.8 times the σ_{SM} at 95% CL (6-7 was expected)

H -> γγ (data 2010):

H -> WW (data 2010):

- Mass range 120-200 GeV Most sensitive to M_H=2M_W
- 9 channels (H+0j, 1j, 2j) * (ee, μμ, eμ)
 - -~ Jet pT > 25 GeV and Jet $|\eta|$ < 4.5 $\,$
- Preselection cuts:
 - 2 opposite-sign hard and isolated leptons
 - MET > 30 GeV
 - **M**_{II} > **15 GeV**, |M_{II}-M_Z| > 10 GeV (for II=ee, μμ)
- Topological selection (optimized according to mass regions and channels):
 - b jet veto
 - $\Delta \phi_{||} < 1.3, 1.8$
 - $M_{II} < 50, 65, 80 \text{ GeV}$ and $|P_T^{II}| > 30 \text{ GeV}$
 - Transverse mass 0.75*M_H<M_T<M_H

- Main backgrounds:
 - -~ WW (M $_{\rm II}$ and $\Delta \varphi_{\rm II}$)
 - Z+jets (ABCD M_{II} and MET)
 - Top (jet veto, reverse the b jet veto)
 - W+jets (anti isolation)

- Data driven method
 - Define control regions (sample enriched in particular backgrounds)
 - Subtract the contamination of other backgrounds in control regions
 - Define "comparable" variables
 - Propagate estimation from control regions to signal regions (using scales from data/MC)

- Exclusion limit
- A 95% CL upper limit on σ × BR(H->WW*) : 54 pb @ M_H=120 GeV 11 pb @ M_H=160 GeV 71 pb @ M_H=200 GeV
- $1.2 \times \sigma_{SM}$ excluded @ M_H = 160 GeV (2.4 was expected)

H -> WW^{*} -> Ινqq (l=e,μ):

- Mass range 220-600 GeV Models: SM and 4th generation of fermions
- 2 channels H+0j, 1j
 - Jet pT > 30 GeV and Jet $|\eta|$ < 4.5
- Preselection cuts:
 - 1 muon or electron (fullfill tight selection criteria) with pT > 30 GeV
 - 0 additional muon or electron (fullfill medium selection criteria) with pT > 20 GeV
 - MET > 30 GeV (against QCD)
 - 2 or 3 jets with pT > 30 GeV and $|\eta|$ < 4.5
 - 2 jets with 71 < M_{jj} < 91 GeV and $|\eta|$ < 2.8
 - b jet veto (against top)

15

- Main backgrounds:
 - W/Z+jets (Data)
 - Multi-jet (Data)
 - Top (MC)
 - Diboson (MC)
- Strategy to estimate:
 - Data driven method:
 - Estimation using a fit to E_T^{miss} distribution
 - Shape from MC (W/Z+jets) or from an anti isolated region (multi-jet)
- Mass reconstruction
 - Using $M_{Iv} = M_W$ constraint
 - Smallest $|P_z^{v}|$

H -> WW^{*} -> lνqq (l=e,μ):

- Exclusion limit
- Exponential fit to the background to set limits with a profile likelihood (systematic sources as nuisance parameters)
- At M_H = 320 GeV, the 95% CL upper limit is approximately 7.13 x σ_{SM} (15.3 was expected)
- For the SM4 prediction, no value of M_H is excluded.

17

H -> ZZ (data 2010):

H -> ZZ^{*} -> IIII (I=e,μ):

- Mass range 130-600 GeV Fully reconstructed final state
- Preselection cuts:
 - >1 quadruplet of 2 pairs of same-flavour opposite charge leptons:
 - >2 leptons in the quadruplet with pT > 20 GeV
 - Z_{1112} the dilepton pair closest to the Z boson mass $|M_{1112}$ - $M_Z| < \Delta M_{12}$ (12-15 GeV)
 - Z_{I3I4} the sub leading (M_{I3I4} > 15-60 GeV)
 - $\Delta R(I,I') > 0.1$ for all leptons
 - Suppress leptons from b-hadrons with impact parameter significance requirements on the 2 least energetic leptons

H -> ZZ^{*} -> IIII (I=e,μ):

- Backgrounds
 - ZZ (irreducible)
 - Z+QQ (reducible)
- Limit:
 - At M_H < 130 GeV too low BR
 - At $M_{\rm H}\,^{\sim}\,160~GeV\,-\,2$ on shell W
 - At $M_H > 180 \text{ GeV} 2 \text{ on shell Z}$
 - At M_{H} = 200 GeV, the 95% CL upper limit on σ is approximately 24 x σ_{SM} (25 was expected)

21

H -> ZZ^{*} -> IIII (I=e,μ):

H -> ZZ^{*} -> llqq (l=e,μ):

- Mass range 200-600 GeV
 2 on shell Z suppress background
- Preselection cuts:
 - 2 same flavour leptons (muon opposite sign)
 - 76 < M_{II} < 106 GeV
 - MET < 50 GeV</p>
 - ≥ 2 jets with 70 < Mjj < 105 GeV</p>
 - − For $M_H \ge 360$ GeV:
 - Jet pT > 50 GeV
 - $\Delta \phi_{ij} < \pi/2$ and $\Delta \phi_{il} < \pi/2$
 - Constraining the dijet to the Z mass
- Backgrounds:
 - Diboson (irreducible MC)
 - Z+jets (MC after verifying in control region)
 - Top pair (reverse MET and M_{\parallel})
 - Multijet (data)

H -> ZZ^{*} -> llqq (l=e,μ):

H -> ZZ^{*} -> llνν (l=e,μ):

- Preselection cuts:
 - b jet veto
 - For M_H < 280 GeV:
 - MET > 66 GeV
 - $\Delta \phi_{II} < 2.64$
 - $\Delta \phi_{\text{H}} > 1 \text{ (M}_{\text{H}} \leq 260 \text{ GeV)}$
 - − For $M_H \ge 280 \text{GeV}$:
 - MET > 82 GeV
 - $\Delta \phi_{II} < 2.25$
 - Looking for the transverse mass
- Backgrounds:
 - Top pair and W+jets (control region)
- Significant contribution from H->WW->lvlv, but orthogonal selection, no overlapping events

H -> ZZ^{*} -> llqq/llvv (l=e,μ):

L. Barak

LISHEP, 6 July 2011

H -> ZZ^{*} -> llqq/llvv (l=e,μ):

Combination (data 2010):

- The expected and observed cross section limits, normalized to the $\sigma_{\rm SM}$, as a function of the Higgs boson mass for the individual search channels.
- The visually most apparent difference between expected and observed limit is in the H -> WW -> lvqq channel, which has a deficit approaching one sigma both at 320 and 480 GeV.
- These results use the profile likelihood method with a power constraint (PCL).
- The theory uncertainties:
 - Gluon-Fusion: 15-20%
 - VBF: 3-9%

Combination (data 2010):

- The expected and observed upper limits on the total σ divided by the expected SM Higgs boson σ .
- Highest sensitivity is in the mass range 160-170 GeV

Combination (data 2010):

- The expected and observed upper limits on the total σ divided by the expected 4SM Higgs boson $\sigma.$
- Excluded for a Higgs mass in range 140 185 GeV (135-210 GeV was expected)

- MSSM Minimal Supersymmetric Standard Model
- At tree level, MSSM Higgs sector described by two parameters:
 - M_A = mass of CP odd Higgs
 - tanβ = ratio of the 'vev' of 2 Higgs doublets
- MSSM Higgs: h, H, A, H±
 - Neutral Higgs bosons –
 h (CP even), H (CP even),
 A (CP odd)
 - Charged Higgs bosons H[±]
- On top of the SM channels, one could also observe:
 - H → μμ, ττ
 - H⁺ \rightarrow τ v, cs (M_{H} ⁺< M_{t})
 - $H^+ \rightarrow \chi^+ \chi^0$
 - $\sigma_{MSSM} \sim (\tan\beta)^2 \times \sigma_{SM}$

H -> $\tau\tau$ -> $Iv\tau_{had}$ (I=e, μ):

- Mass range 90-300 GeV
- Preselection cuts:
 - $N_e + N_\mu = 1$
 - $pT_e > 20 \text{ GeV}, pT_{\mu} > 15 \text{ GeV}$
 - **N**_{τ} =**1**, pT_{τ,vis} > 20 GeV
 - $Q_{\tau} \cdot Q_{e/\mu} = -1$
 - MET > 20 GeV
 - $M_{T} < 30 \text{ GeV}$
- Backgrounds
 - Z -> $\tau\tau$ (Validate with Z-> $\mu\mu$ data by embedding τ 's in the place of μ)
 - QCD and W+jets (same sign control sample)
 - Z -> ee,μμ (MC)
 - Diboson (MC)
 - Тор (MC)

H -> ττ -> eμ+4ν:

- Mass range 90-300 GeV
- Preselection cuts:
 - $-N_e = 1$
 - $N_{\mu} = 1$
 - $pT^e > 20 \text{ GeV}, pT^{\mu} > 15 \text{ GeV}$
 - $Q_{\mu} \cdot Q_{e} = -1$
 - H_T < 120 GeV (against TOP)
- Backgrounds
 - Z -> ττ (embedding method for validation)
 - QCD (ABCD method)
 - W+jets (MC)
 - Z -> ee, μμ (MC)
 - Diboson (MC)
 - Тор (MC)

- H -> ττ -> Ιντ_{had} (l=e,μ):
- Exclusion limit
- Low Higgs mass:
 ≥ tan β ~ 30
- High tan β:
 200 ≤ M_A ≤ 300 GeV

Charged Higgs:

H⁺ -> τν (tan $\beta > 1$):

- τ -> νΙν (leptonic tau)
 - W -> lv (di-lepton) or W -> qq (single lepton)
 - Discriminating variables:
 - COS θ^* and M_T^H / M_{T2}^H

$$(m_T^H)^2 = \left(\sqrt{m_{\rm top}^2 + (\vec{p}_T^{\ l} + \vec{p}_T^{\ b} + \vec{p}_T^{\ {\rm miss}})^2} - p_T^b\right)^2 - \left(\vec{p}_T^{\ l} + \vec{p}_T^{\ {\rm miss}}\right)^2$$

- τ -> vqq (hadronic tau)
 - W -> Iv / qq
 - Estimating backgrounds from data
 - Fakes from electrons
 - Fakes from muons
 - Fakes from jets
 - QCD

Charged Higgs:

H⁺ -> τ ν (tan β > 1):

- τ -> νΙν (leptonic tau)
 - W -> lv (di-lepton) or W -> qq (single lepton)
 - Discriminating variables:

• COS
$$\theta^*$$
 and M_T^H / M_{T2}^H
 $\cos \theta_l^* = \frac{2m_{bl}^2}{m_{top}^2 - m_W^2} - 1$

- τ -> vqq (hadronic tau)
 - W -> Iv / qq
 - Estimating backgrounds from data
 - Fakes from electrons
 - Fakes from muons
 - Fakes from jets
 - QCD

A conne

Charged Higgs:

H⁺ -> τν (tan $\beta > 1$):

- τ -> νΙν (leptonic tau)
 - W -> lv (di-lepton) or W -> qq (single lepton)
 - Discriminating variables:
 - COS θ^* and M_T^H / M_{T2}^H $\cos \theta_l^* = \frac{2m_{bl}^2}{m_{top}^2 - m_W^2} - 1$
- τ -> νqq (hadronic tau)
 - W -> Iv / qq
 - Estimating backgrounds from data
 - Fakes from electrons
 - Fakes from muons
 - Fakes from jets
 - QCD

Summary

- With ~36 pb⁻¹, ATLAS excluded the Higgs_{4SM} at 140 < M_H < 185 GeV
- ATLAS also put an upper limit of $2.3_{\text{x}}\sigma_{\text{SM}}$ in 160-170 GeV
- With 1 fb⁻¹ of data, ATLAS expects to achieve a combined SM-like Higgs boson exclusion sensitivity in the range 130 < M_H < 460 GeV

Summary

Next year presentation

Next year presentation

Next year presentation

