

Diffractive Processes at HERA

A. Solano Univ. of Torino and INFN

LISHEP 2011

Outline:

- Diffraction in ep scattering
- Latest results on inclusive diffraction
- QCD fits and diffractive PDFs extraction
- Latest results on exclusive vector meson production

HERA experiments

HERA-I : 1992-2000 p : 820 GeV 920 GeV

HERA-II : 2001-2007 p : 920 GeV 575 GeV 460 GeV

0.5 fb⁻¹ collected by H1 and ZEUS experiments Final analyses of HERA data are underway

Kinematics and cross sections

- \mathbf{Q}^2 = virtuality of exchanged photon
- 🗙 = Bjorken scaling variable
- **y** = inelasticity of virtual photon
- W = invariant mass of γ^* -p system
- M_X = invariant mass of γ^* -IP system
- $\boldsymbol{\beta} = x/x_{\text{IP}}$ = fraction of IP momentum carried by struck parton
- t = (4-momentum exchanged at p vertex)² typically: |t| < 1 GeV²

♦ N = proton t → Single Diffractive (SD) events

♦ N = proton dissociative system
 → Double Diffractive (DD) events

$$\frac{d^{4}\sigma^{e_{p} \to e'Xp'}}{d\beta dQ^{2} dx_{IP} dt} = \frac{2\pi a^{2}}{\beta Q^{4}} Y_{+} [F_{2}^{D(4)}(\beta, Q^{2}, x_{IP}, t) - \frac{Y^{2}}{Y_{+}} F_{L}^{D(4)}(\beta, Q^{2}, x_{IP}, t)]$$

where $Y_{+} = 1 + (1-y)^{2}$

 $= \sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t) \longrightarrow \begin{array}{c} \text{Reduced} \\ \text{cross section} \end{array}$

When t is not measured $\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = \int \sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t) dt$

pQCD framework as long as a hard scale is present :

QCD factorisation theorem, proven for DDIS by J.Collins [PR D57 (1998) 3051]

$$\sigma^{D}(\gamma^{*}p \rightarrow Xp) = \sum_{i} \hat{\sigma} \otimes f_{i}^{D}(x_{IP}, t, z, Q^{2})$$
Hard subprocess ME
pQCD calculable
DPDFs = proton PDFs when a fast
proton is in the final state,
universal for diffractive DIS processes
Proton-vertex factorisation assumption, supported by H1 and ZEUS data
$$f_{i}^{D}(x_{IP}, t, z, Q^{2}) = f_{IP}(x_{IP}, t)f_{i}^{IP}(z, Q^{2}) + f_{IR}(x_{IP}, t)f_{i}^{IR}(z, Q^{2})$$
Flux parametrisation
$$f(x_{IP}, t) = \frac{Ae^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$
With $\alpha(t) = \alpha(0) + \alpha't$

Use inclusive diffractive data to extract DPDFs via NLO QCD fits,
 fitting z and Q² dependence at fixed x_{IP} and t
 (z = momentum fraction of the diffrection exchange entering the hard scattering)

7/7/2011

7/7/2011

t dependence

- t-slope does not change with Q^2 or M_X/β at fixed x_{IP} \rightarrow data consistent with **proton-vertex factorization**
- H1 results exibit an x_{IP} dependence of the t-slope in (Q²,β) bins
 → IR contribution at high x_{IP}

x_{IP} dependence of $\sigma_r^{D(4)}$

H1 HERA-II PS data (156 pb⁻¹) improve stats by a factor of 20, allowing to :

 \rightarrow measure three t bins \rightarrow reach higher Q²

syst uncertainty ~ 8% norm uncertainty ~ 4.3%

LISHEP2011 - Diffractive processes at HERA - A. Solano

ZEUS

x_{IP} dependence of $\sigma_{\text{r}}^{\text{D(3)}}$

LRG vs PS

Q^2 dependence of $\sigma_r^{D(3)}$

H1prelim 10-011

ZEUS, NP B816 (2009) 1

ZEUS corrected to $M_N < 1.6$ GeV with PYTHIA MC

7/7/2011

Diffractive PDFs from NLO fits

Inclusive data : LRG + LPS

NLO QCD fits:

- assume proton-vertex factorization, fit z and Q² dependence at fixed x_{IP} and t - parametrize IP PDFs at Q²₀ = 1.8 GeV²

$$\begin{array}{l} z \; f^{IP}_{u,d,s} \left(z, Q^2_{\; 0} \right) = A_q \, z^{Bq} \left(1 {\text -} z \right) \, {}^{Cq} \\ z \; f^{IP}_{\; g} \left(z, Q_0^{\; 2} \right) = A_g \; z^{Bg} \left(1 {\text -} z \right) \, {}^{Cg} \end{array}$$

- evolve with NLO DGLAP

Different parametrizations:

- "Standard": **fit S** with B_g and C_g free
- "Constant": fit C with $B_g = C_g = 0$ (as for H1 2006 fit B - H1, EPJ C48 (2006) 715)

Both fits give a comparably good description of inclusive data for $Q^2 > 5 \text{ GeV}^2$, but...

Quark densities well constrained by reduced cross sections

ZEUS, NP B831 (2010) 1

Gluon density weakly constrained in the high z_{IP} region (only indirectly by scaling violations)

7/7/2011

Comparison with DDIS dijet data

ZEUS, EPJ C52 (2007) 813

Use dijet data (photongluon fusion at LO) for a combined **fit S inclusive+dijets (SJ) :**

LISHEP2011 - Diffractive processes at HERA - A. Solano

ZEUS

Х

p(P')

e(k')

~ γ*(q)

p(P)

DPDFs from fit SJ

Inclusive + dijet data

 $\sigma_r^{D} = F_2^{D}$

Direct measurement of F^D

 $F_1^{D} \sim a_S \times q(x)$

H1prelim 09-011 H1prelim 10-017

Challenging measurement, requires good understanding of the detector Measurement is performed with data taken at **3 proton beam energies**: 920, 460 and 575 GeV

 \Rightarrow At fixed Q² and x_{IP}, high y corresponds to low β (Q² = sxy, x = β x_{IP})

 \rightarrow Data consistent with NLO predictions based on H1 2006 fit B

D* and dijets in diffractive DIS

Open charm: H1, EPJ C50 (2007) 1 ZEUS, NP B672 (2003) 3 Dijets: H1, JHEP 0710:042 (2007) ZEUS, EPJ C52 (2007) 813

Universality of DPDFs has been successfully tested comparing with semi-inclusive final states like open charm and dijets in DIS where hard scales in the process ensure use of pQCD

DDIS dijets with a **tagged proton** in **FPS** - **H1prelim-10-013**

\rightarrow NLO DGLAP with H1 DPDFs gives a good description of the data

7/7/2011

Factorization breaking at Tevatron and gap survival probability

CDF, PRL 84 (2000) 5043 + P.Newman/H1

Diffractive dijet measurement in ppbar by CDF

Comparison with NLO predictions with **HERA DPDFs as input**:

Significant **overestimation** (~ factor 10) of the data by NLO calculations and **different shape**

Factorisation not expected to hold for diffractive hadron-hadron collisions

 Violation of factorisation is understood in terms of (soft) rescattering between spectator partons, in initial and final states, suppressing the large rapidity gap: suppression ↔ 'rapidity gap survival probability'

• Models including rescattering corrections via multi-pomeron exchanges are able to describe the suppression observed [KKMR, EPJ C21 (2001) 521]

Of great interest for LHC!

At HERA we have something similar to a hadron: **quasi-real photons** (Q² ~ 0) can develop a **hadronic structure**

Direct photon $(x_{\gamma} \sim 1)$ Resolved photon ($x_v < 1$) (at LO) High E_{T} of the jets Remnant provides the hard scale б(u) Jet Jet | M₁₂ Jet Х Jet **Z**IP x_{v} = fraction of photon's momentum in hard subprocess Remnant Remnant XIP IP QCD factorisation is expected QCD factorisation is expected to break like in hadron-hadron: to hold like in DIS Secondary interactions γp between spectators Expected suppression ~ 0.34 for resolved γ [KKMR, PL B567 (2003) 61]

LISHEP2011 - Diffractive processes at HERA - A. Solano

рр

Dijets in diffractive photoproduction

(a)

ZEUS

0.6

0.6

ZEUS diff dijet yp 99-00

energy scale uncertainty ZEUS DPDF SJ DPDF exp. uncertainty H1 Fit 2007 Jets × 0.81

H1: data/NLO = 0.58 0.12(exp) \pm 0.14(scale) \pm 0.09(DPDF)

Both H1 and ZEUS see **no difference between direct and resolved regions** and prefer a global suppression factor

ZEUS: no evidence for a gap suppression

0.8

0.8

ZEUS has higher jet- E_T cuts than H1: $E_T^{1(2)} > 7.5(6.5)$ GeV²

1 X^{obs}

X^{obs}

(b)

7/7/2011

dơ/dx_y^{obs} (pb)

500

400

300

200

100

0.5

0

1.4

1.2

0.8

0.6

ratio to ZEUS DPDF SJ

0.4

0.4

ZEUS diff dijet γp 99-00

DPDF exp. uncertaint

ZEUS DPDF SJ

$$\sigma(W) \propto W^{\delta}$$

 Expect δ to increase from soft (~0.2, 'soft Pomeron' value) to hard (~0.8, reflecting large gluon density at low x)

GPDs and DVCS

 $\sigma \propto H(x_1, x_2, t, Q^2)$

Generalised PDFs (GPDs):

- sensitive to **parton-parton momenta correlation** in the proton
- t-dependence gives 2dim distribution of partons in the transverse plane
- important ingredient for estimating central exclusive production at LHC

Deeply Virtual Compton Scattering (DVCS):

Asimmetry amplidutes related to GPDs

W dependence in photoproduction

 M_{VM} is the scale \rightarrow same observed when varying Q² for a given VM density!

Soft to hard $-\sigma(W)$

 \Rightarrow Process becomes hard as the scale (Q² + M²) becomes larger

Soft to hard – t-slope

 $r_{gluons} \sim 0.6 \text{ fm}$ - radius of gluon density in proton $r_{proton} \sim 0.8 \text{ fm}$ - charge density in the proton

Summary

- ✓ Unique diffractive data continue to arrive from H1 and ZEUS
- Consistency reached between different experiments, methods and data sets
 Ready to combine inclusive cross sections between experiments
- ✓ Well constrained DPDFs can be obtained from a combined fit to inclusive and dijet data and used to predict other processes in diffractive DIS, proving QCD factorisation
 ⇒ DPDFs are gluon dominated
- ✓ Direct measurement of F^D
 - ⇒ Independent test of the diffractive gluon density
- Diffractive dijet photoproduction has been studied to test possible factorisation breaking as in proton-antiproton collisions at Tevatron
 Progress in understanding rapidity gap survival probability
- ✓ Lot of inputs from exclusive vector meson production and DVCS
 - ⇒ Transition from soft to hard regime is visible
 - ⇒ Precision measurements can constrain the gluon density
 - ⇒ Sensitivity to the GPDs

Backup slides

Diffraction in hadron scattering

Diffraction is a feature of hadron-hadron interactions (30% of σ_{tot})

- ⇒ Beam particles emerge intact or dissociated into low-mass states → Very small fractional momentum losses (within a few %)
- ⇒ Final-state systems separated by large polar angle (or pseudorapidity η = - ln[tan(θ/2)])
 → Large Rapidity Gap (LRG)
- ⇒ Interaction mediated by t-channel exchange of an object with vacuum quantum numbers (no colour)
 → Pomeron (IP)

Why diffraction?

Forward peak for q=0 (diffractive peak)

Diffraction pattern related to size of target and wavelength of beam

Propagation/interaction of a a hadron \Rightarrow absorption of its wave function

|t| ≈ (p()² 4-momentum transfer
(scattering angle
b = R²/4

R transverse distance projectile-target

Proton vertex factorisation

Measure the x_{IP} dependence of the data as a function of β and Q^2 The proton vertex factorisation approximation holds within the experimental precision \rightarrow allow NLO QCD analysis of the β and Q^2 dependences

LISHEP2011 - Diffractive processes at HERA - A. Solano

ZEUS

Q^2 dependence of $\sigma_r^{D(3)}$ from PS data

Reasonable agreement between H1-FPS and ZEUS-LPS

Positive scaling violation for $\beta < 0.2$

H1 $\sigma_r^{D(3)}$ summary plot

LISHEP2011 - Diffractive processes at HERA - A. Solano

ZEUS

Pomeron PDFs parametrised at initial $Q_0^2 = 1.8 \text{ GeV}^2$, Q^2 evolution with DGLAP :

$$zf_{k}^{IP}(z,Q^{2}) = A_{k}z^{B_{k}}(1-z)^{C_{k}}$$
 with k = g,S

- for all flavours q = qbar
- assume d = u = s
- heavy quarks dynamically generated above thresholds: $m_c = 1.35 \text{ GeV}$, $m_b = 4.3 \text{ GeV}$ using the General-Mass Variable-Flavour-Number-Scheme of Thorne and Roberts
 - \rightarrow 6 parameters + $\alpha_{IP}(0)$, $\alpha_{IR}(0)$, A_{IR} (b and α ' fixed by Regge fits to ep and pp data)

Gluons expected to be poorly constrained by inclusive data ($\ln Q^2$ dependence of F_2^D)

→ two cases: "Standard": fit S with B_g and C_g free "Constant": fit C with $B_g = C_g = 0$ (as for H1 2006 fit B)

Latest inclusive ZEUS data:- LRG and LPS (229 + 36 points)ZEUS, NP B816 (2009) 1- only data with Q2 > 5 GeV2 used- overlapping LPS data not used

7/7/2011

Fit vs data

ZEUS, NP B831 (2010) 1

Fit parameters and χ^2/ndf

Table 3

Parameters obtained with the different fits and their experimental uncertainties.

Parameter	Fit value DPDF S	Fit value DPDF C	Fit value DPDF SJ
Aq	0.135 ± 0.025	0.161 ± 0.030	0.151 ± 0.020
B_q	1.34 ± 0.05	1.25 ± 0.03	1.23 ± 0.04
C_q	0.340 ± 0.043	0.358 ± 0.043	0.332 ± 0.049
Ag	0.131 ± 0.035	0.434 ± 0.074	0.301 ± 0.025
B_g	-0.422 ± 0.066	0	-0.161 ± 0.051
C_g	-0.725 ± 0.082	0	-0.232 ± 0.058
$\alpha_{\mathbb{P}}(0)$	1.12 ± 0.02	1.11 ± 0.02	1.11 ± 0.02
$\alpha_{\mathbb{R}}(0)$	0.732 ± 0.031	0.668 ± 0.040	0.699 ± 0.043
$A_{\mathbb{R}}$	2.50 ± 0.52	3.41 ± 1.27	2.70 ± 0.66
χ^2/ndf	315/265 = 1.19	312/265 = 1.18	336/293 = 1.15

Table 1

The values of the parameters fixed in the fits and the measurements providing this input.

Parameter	Fixed to (GeV ⁻²)	Measurement (GeV ⁻²)	Ref.
α'_{p}	0	-0.01 ± 0.06 (stat.) $^{+0.04}_{-0.08}$ (syst.) ± 0.04 (model)	[10]
$\alpha_{\mathbb{R}}^{\vec{l}}$	0.9	0.90±0.10	[32]
$B_{\mathbb{P}}$	7.0	$7.1 \pm 0.7 \text{ (stat.)}^{+1.4}_{-0.7} \text{ (syst.)}$	[10]
$B_{\mathbb{R}}$	2.0	2.0 ± 2.0	[32]

Comparison with H1 2006 fit B

H1 predictions corrected to $M_{Y} = M_{P}$ as for ZEUS via the scaling factor 0.81

7/7/2011

LISHEP2011 - Diffractive processes at HERA - A. Solano

7

Use DPDFs extracted from inclusive DDIS for calculating NLO predictions to semi-inclusive final states: **test universality of DPDFs**

 \rightarrow Open charm and dijets in DIS: hard scales in the process ensure use of pQCD

Use DPDFs extracted from inclusive DDIS for calculating NLO predictions to semi-inclusive final states: **test universality of DPDFs**

 \rightarrow Open charm and dijets in DIS: hard scales in the process ensure use of pQCD

→ QCD factorisation holds in DDIS!

First measurement of dijets in DDIS with a tagged proton (H1 FPS) - H1prelim-10-013

Dijets:

H1, JHEP 0710:042 (2007)

ZEUS, EPJ C52 (2007) 813

Deviations might be related to missing pomeron remnant in NLO predictions (NLOJET++) Deviations at high $\Delta \eta^* \rightarrow$ interesting to look at forward jets

Forward jets in DDIS with proton tag

Dijet system: Forward jet: $p_T^* > 4.5 \text{ GeV}, \ 1 < \eta_{fwd} < 2.8$ Central jet: $p_T^* > 3.5 \text{ GeV}, \ -1 < \eta_{cen} < \eta_{fwd}$ (previous 2 central jets: $p_{T1}^* > 5 \text{ GeV}, \ p_{T2}^* > 4 \text{ GeV}, \ -1 < \eta < 2.5$)

Predictions scaled by 1.23 due to proton dissociation not present in FPS data

NLO DGLAP with H1 fit B DPDFs gives a good description of the data

Dijets in diffractive photoproduction

H1 Diffractive Dijet Photoproduction

H1, EPJ C51 (2007) 549

- $E_T^{jet1} > 5 \text{ GeV}, E_T^{jet2} > 4 \text{ GeV}$
- Cross section include p dissoc. with $M_{\rm Y}$ < 1.6 GeV
- Cross section corrected at hadron level

NLO overestimates the measured cross section by a factor ~ 2, both in the direct and resolved region

Suppression in γp is much smaller than in ppbar

NLO predictions assuming factorization with Frixione et al. program [NP B467 (1996) 399; B507 (1997) 295]

7/7/2011

(q d) 800

d₀/dx₀^{obs} 09

400

200

dơ/dx_γ^{obs} (data/NLO)

hadr. corr.

Dijets in diffractive photoproduction

ZEUS, EPJ C55 (2008) 177

- $E_T^{jet1} > 7.5 \text{ GeV}, E_T^{jet2} > 6.5 \text{ GeV}$
- Cross section scaled down for p-dissoc. contribution: (16 4)%
- Cross section corrected at hadron level
- Suppression factor 0.34 applied to resolved component only

Within uncertainties data show a weak (if any) suppression: 0.6-0.9

ZEUS as H1 do not see any difference between the resolved and direct regions, in contrast to theory!

NLO predictions assuming factorization with Klasen & Kramer program [EPJ C38 (2004) 9]

0.6

ZEUS

ZEUS 77 pb⁻¹

ZEUS LPS, GRV

----- H1 2006 B, GRV (x 0.87)

211111111111

0.4

H1 2006 A, AFG (x 0.87)

H1 2006 A, GRV (x 0.87)

(a)

(b)

 x_{γ}^{obs}

0.8

E_T dependence of suppression?

ZEUS

Difference between H1 and ZEUS possibly due to different $E_{\rm T}$ regions?

Refined gap survival model (KKMR, hep-ph/0911.3716) predicts a significantly weaker suppression:

- direct γ unsuppressed
- hadron-like part of resolved γ suppressed by ~0.34 (only $x_{\gamma} < 0.1$)
- point-like part of resolved γ less suppressed, ~0.7-0.8

 E_T dependence: lower E_T cuts on the jets increase hadronisation corrections and absorptive effects, producing a higher suppression

Both H1 and ZEUS data prefer a global suppression factor

Diffractive/inclusive dijet yp cross sections

ZEUS

Influence of **multiple interactions** in inclusive data is large in the kinematic range of the analysis, which preclude strong conclusions about rapidity gap survival