Top Mass and Cross-sections at CMS

Helena Malbouisson (UNL) on behalf of the CMS Collaboration

LISHEP 2011 - Rio De Janeiro, July 4 - 10, 2011

The Top Quark

Standard Model measurements

- Heaviest known elementary particle
- Unique window on bare quarks due to short lifetime
- Electroweak and QCD precision measurement
- Constraints on Higgs mass

+ A window to new physics

- New physics might couple preferentially to top
- New particles may decay to top
- Non-standard couplings
- In many new physics scenarios (e.g. SUSY) top is dominant BG
- Great tool to calibrate detector and test physics objects

Top quark pair production at the LHC

 $\sigma_{t\bar{t}}^{NLO} = 158^{+23}_{-24} \, pb$

• gluon gluon fusion is the dominant production process

• Final state is categorized by the decay of the W boson

Single Top production at the LHC

Single top quark production, an electroweak interaction

Outline

- ✦ Top pair cross-section in the dilepton channel
- ✦ Top pair cross-section in the lepton+jets channel
- ✤ Top Mass measurement in the dilepton channel
- ✦ Top Mass measurement in the lepton+jets channel
- t-channel Single Top cross-section
- Summary and outlook

In this talk: CMS data recorded in 2010 (36 pb⁻¹)

Dilepton channel - event selection

- Inclusive single lepton triggers
 - muons and electrons
- Two isolated, opposite charge leptons
 (ee, μμ, eμ)
 - p_T >20 GeV, $|\eta_{\mu}| < 2.4$, $|\eta_e| < 2.5$
 - Good ID, conversion rejection for electrons.
 - Relative isolation<0.15

- Z-boson veto (ee, μμ)
 - | M(ll)-M(Z) | >15 GeV
- Missing E_T (MET), in ee, $\mu\mu$ - MET>30 (50) for events with ≥ 2 (1) jets

- Jets - p_T>30 GeV, |η|<2.5
- b-jet identification
 - track-counting algorithm

Top pair cross-section in dileptons

arXiv:1105.5661, acc. by JHEP

number of jets, after full event selection, before b-tagging:

number of jets, after full event selection, after b-tagging:

Main backgrounds from data-driven methods:

- Drell-Yan, after Z-veto:
 - N(in veto, data)*R(out/in, MC)
- Non-W/Z leptons (mainly QCD and W+jets):
 fake rate measured from QCD sample

number of b-tagged jets, after full event selection, with ≥ 2 jets

Very pure sample of Top events!

Main systematics:

- Data-driven background estimates
- Jet energy scale
- b-tagging efficiency

Top pair cross-section in dileptons

Combination of cross-section measurements

arXiv:1105.5661, acc. by JHEP

Counting Experiment				
	Final state	e ⁺ e ⁻	$\mu^+\mu^-$	e±µ∓
three categories for each mode, ee, µµ, eµ:	At least two jets, no b-tagging requirement			
	Events in data	23	28	60
	Simulated backgrounds	1.4 ± 0.3	1.5 ± 0.3	5.2 ± 1.2
• > ? jets no b -tagging	$Z/\gamma^{\star} \rightarrow e^+e^-/\mu^+\mu^-$	3.0 ± 1.8	7.4 ± 4.1	-
	Non-W/Z	1.1 ± 1.4	0.6 ± 1.1	1.4 ± 1.6
• ≥ 2 jets, ≥ 1 b-jet	All backgrounds	5.5 ± 2.3	9.5 ± 4.3	6.7 ± 2.0
	Total acceptance \mathcal{A} (%)	0.259 ± 0.021	0.324 ± 0.025	0.928 ± 0.057
• I jet, no b-tagging	Cross section (pb)	$189\pm52\pm29$	$159\pm45\pm39$	$160\pm23\pm12$
	At least two jets, at least one b-jet			
	Events in data	15	24	51
nine cross-section measurements	Simulated backgrounds	0.7 ± 0.2	0.8 ± 0.3	2.5 ± 0.7
<u>Inne crobb beetion medbarements</u>	$Z/\gamma^{\star} \rightarrow e^+e^-/\mu^+\mu^-$	0.7 ± 0.7	2.6 ± 1.8	-
	Non-W/Z	0.9 ± 1.2	0.3 ± 0.8	0.5 ± 1.1
Combined cross-section:	All backgrounds	2.3 ± 1.4	3.8 ± 2.0	3.0 ± 1.4
	Total acceptance \mathcal{A} (%)	0.236 ± 0.022	0.303 ± 0.028	0.857 ± 0.068
	Cross section (pb)	$150\pm46\pm22$	$186\pm45\pm25$	$156 \pm 23 \pm 13$
	One jet, no b-tagging requirement			
-(, +1) 1(0 10(-1-1) 14(1) 7(11) -1	Events in data	8	10	18
$\sigma(\text{pp} \rightarrow \text{tt}) = 168 \pm 18 \text{ (stat.)} \pm 14 \text{ (syst.)} \pm 7 \text{ (lumi.) pb.}$	Simulated backgrounds	1.6 ± 0.4	1.9 ± 0.4	3.6 ± 0.9
	$Z/\gamma^{\star} \rightarrow e^{+}e^{-}/\mu^{+}\mu^{-}$	0.2 ± 0.3	5.2 ± 4.3	_
	Non-W/Z	0.3 ± 0.5	0.1 ± 0.4	1.3 ± 1.3
	All backgrounds	2.1 ± 0.7	7.1 ± 4.3	4.9 ± 1.5
	Total acceptance A (%)	0.058 ± 0.007	0.074 ± 0.008	0.183 ± 0.024
Here and elsewhere,	Cross section (pb)	$282 \pm 135 \pm 45$	$107 \pm 119 \pm 163$	$200 \pm 65 \pm 35$
1. main a situr due soutoire tour 107				
iuminosity uncertainty: 4%				9

Lepton+jets - event selection

- Considered modes:
 ★ e+jets, μ+jets
- Single lepton triggers used
- Exactly one isolated lepton
 * Muons: pT>20 GeV, |η|<2.1
 Relative Isolation < 0.05
 * Electrons: pT>30 GeV, |η|<2.5
 Relative Isolation, conversion veto
- Jets
 - ***** pT>30 GeV, |η|<2.4

- Analysis without b-tagging
 * Use MET shape as
 discriminating distribution
- Analysis with b-tagging
 * MET>20 GeV
 * Secondary Vertex (SV) algorithm

Top pair cross-section in lepton +jets <u>without</u> b-tagging

arXiv:1106.0902, subm. to EPJC

<u>Method</u>: simultaneous template fit in two distributions to extract N(ttbar)

Top pair cross-section in lepton +jets <u>without</u> b-tagging

arXiv:1106.0902, subm. to EPJC

number of jets, after full event selection, e+jets:

number of jets, after full event selection, **µ+jets**:

Main systematics:

- Jet Energy Scale
- Factorization scale

Top pair cross-section in lepton +jets with b-tagging

- Use events with ≥ 1 b-tag
 Secondary Vertex (SV) algorithm
- The data are categorized in terms of the N(jets) and N(b-tags).

2-D (N_{jets}, N_{b-tag}) template fit

of the SV mass (invariant mass of the tracks

forming the secondary vertex)

Most important systematics fitted in situ:

- Jet energy scale
- B-tag efficiency
- W+jets renormalization / factorization scale

Top pair cross-section in lepton +jets with b-tagging **TOP-10-003**

Fit result.

Secondary Vertex mass distributions in bins of N(jets) and N(b-tag) for μ and e channels:

Combined cross-section $\sigma_{t\bar{t}} = 150 \pm 9 \text{ (stat.)} \pm 17 \text{ (syst.)} \pm 6 \text{ (lum.) pb}$

13 % uncertainty

Single b-tag:

Top pair cross-section in lepton +jets with b-tagging cross-check analyses

Soft muon tagging in µ+jets

- Orthogonal method to identify b-jets
- Suffers from reduced efficiency

Counting experiment in e+jets

- W+jets background: assume fixed ratio $W+ \ge n$ Jets / $W + \ge (n+1)$ Jets (Berends-Giele method)

Neural network analysis in µ+jets

- NN input variables: $\Delta R(jet1, jet2), \eta_{\mu}, b$ tag

All in good agreement!

TOP-10-003

Neural network discriminant

Top pair cross-section combination

TOP-11-001

Top Mass in dileptons

arXiv:1105.5661, acc. by JHEP

- Event selection similar to dilepton cross-section
- Two methods to deal with under-constrained system.

• Analytical Matrix Weighting Technique (aMWT):

- solves equations for m_{top} and assigns weights to each solution
- for each event, take the m_{top}
 with the highest sum of weights
- based on MWT method from D0: PRL 80 (1998) 2063

• KINb Method:

- solves kinematic equations and accepts solutions that are within $\Delta m_{top} < 3 \text{ GeV}$

- for each event, combination with largest number of solutions is chosen
- mass estimate from
 Gaussian fit around peak of solutions

- based on KIN method from CDF: PRD 73 (2006) 112006

Top Mass in dileptons (arXiv:1105.5661)

Systematic uncertainties
jet energy scale
pile-up
Underlying Events

First m(top) measurement at LHC! Good agreement with world average 173.3 ± 1.1GeV

Combined Mass measurement

Measured m_{top} (in GeV/ c^2)
$175.8 \pm 4.9 (\text{stat.}) \pm 4.5 (\text{syst.})$
$174.8 \pm 5.5 (\mathrm{stat.})^{+4.5}_{-5.0} (\mathrm{syst.})$
$175.5 \pm 4.6 (\text{stat.}) \pm 4.6 (\text{syst.})$

Top Mass in lepton+jets

- Using the "Ideogram method" (DELPHI, D0, CDF);
- constrained kinematic fitter used to reconstruct the event's kinematic;
- event selection as in the cross-section analysis + requirement on the χ^2 of the fit;
- for each event, a likelihood is calculated using the output of the kinematic fit;

• a joint likelihood fit over all the events from the selected sample is used to extract the top quark mass.

CMS PAS TOP-10-009

• Systematics:

- dominated by jet energy scale

Central value (e/μ +jets channels)

 $m_{\rm t} = 173.1 \pm 2.1({\rm stat})^{+2.4}_{-2.1}({\rm JES}) \pm 1.4({\rm other \ syst})$ GeV.

Combined measurement with dileptons

 $m_{\rm t} = 173.4 \pm 1.9({\rm stat}) \pm 2.7({\rm syst})$ GeV.

t-channel single top cross-section

Single top event selection

arXiv:1106.3052, subm. to PRL

- 1 isolated electron (p_T >30 GeV) or muon (p_T >20 GeV)
- 2 jets, E_T >30 GeV, $|\eta|$ <5.0
 - One "tight" b-tag
 - veto on "loose" b-tag (2D analysis)
 - veto on back-to-back jets (BDT analysis)

$$\bullet$$
 W transverse mass $>40~(50)$ GeV for μ (e).

• top candidate reconstructed by imposing a constraint on the W mass

t-channel single top cross-section 2 complementary analyses: 2D template fit (2D) and Boosted Decision Tree (BDT) <u>arXiv:1106.3052</u>, subm. to PRL

t-channel single top cross-section

 $104.1 \pm \frac{50.9}{50.9}$ 2D, µ channel $154.2 \pm \frac{73.1}{73.1}$ 2D, e channel $89.8 \pm {}^{40.4}_{40.4}$ BDT, µ channel $59.2 \pm \frac{37.8}{37.8}$ BDT, e channel $124.2 \pm \frac{48.1}{48.1}$ 2D, e+µ channel $78.7 \pm \frac{29.5}{29.5}$ BDT, e+µ channel $83.6 \pm \frac{30.0}{30.0}$ CMS combination -50 50 -100 0 100 150 200 Single Top t-Channel Production Cross Section [pb]

CMS Preliminary, \sqrt{s} =7 TeV, L=35.9 pb⁻¹

Confirmed Tevatron single top quark observation.

First single top cross-section measurement in pp collisions!

Reached 33% precision already, with only 2010 data!

Summary and Outlook

• Many CMS Top Physics results already in the first year of data taking!

Impressive precision:

- top pair production cross-section to 12 %
- top mass to 2 %
- t-channel Single Top cross-section to 33%

 Stay tuned for a wealth of novel results on Top Physics to appear very soon!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Other CMS Top Physics results not covered in this talk:
top pair invariant mass
forward-backward charge

- asymmetry
- like-sign top pairs

BACKUP

LHC p-p collisions at 7 TeV center-of-mass energy

LHC peak instantaneous luminosity:
 ~1200 x 10³⁰ cm⁻²s⁻¹

data-taking period <u>recorded and</u> <u>certified by the CMS</u> experiment shown in this talk, corresponding to **36 pb⁻¹**

CMS performance: 92% average efficiency

25

MC Simulation and Theory uncertainties

• Use MADGRAPH to simulate top signal and most important backgrounds (W/Z+jets)

- Matrix elements with up to 3 (tt) or 4 (W/Z) extra jets
- ME+PS matching using MLM prescription
- Scales set as

- Cross sections rescaled to inclusive (N)NLO values

• Dedicated samples to estimate modeling uncertainties, varying

- scale Q by factors 2.0 and 0.5
- amount of ISR/FSR radiation
- matching thresholds by factors 2.0 and 0.5
- MC@NLO as alternate signal generator
- Use data-driven backgrounds wherever possible

Total cross-section at 7 TeV: • NLO (MCFM): $\sigma_{t\bar{t}}^{\text{NLO}} = 158^{+23}_{-24} \text{ pb}$

- approx. NNLO
 - Kidonakis, PRD 82 (2010) 114030: $\sigma_{t\bar{t}} = 163^{+11}_{-10} \text{ pb}$

• Langenfeld, Moch, Uwer, PRD80 (2009) 054009;

• Aliev et al., CPC 182 (2011) 1034: $\sigma_{t\bar{t}} = 164^{+10}_{-13} \text{ pb}$

Enhancing the top-antitop signal by identifying b-jets: <u>b-tagging</u>

b-quarks significantly differ from light flavor quarks by: mass: m = 4.2 GeV;

- + lifetime: $\tau \approx 1.5$ ps -> ~1.8 mm (at 20 GeV) before decay;
- decay: weak, mostly into c-quarks, ~20% decay into leptons);
- tracks: high decay multiplicity, significant displacement;
- Secondary vertices (SV): tracks intersecting at a common vertex

Enhancing the top pair signal by identifying b-jets: <u>b-tagging</u>

CMS PAS BTV-10-001

"Track counting" tagger: Uses
 Impact Parameter significance of
 the n-th track as discriminator;

* General good data-MC agreement;

* Differences are taken into account in analysis by applying a scale factor (very close to unity).28

 "Secondary Vertex" tagger: uses discriminator based on 3D flight distance;

