

SHEP 2011, July 5th

B Decay Measurements Towards CPV in ATLAS

G. Eigen, University of Bergen

Outline

Introduction

- ATLAS detector and performance
- Vertex and impact parameter resolution
- Exclusive B reconstruction
- B_d^0 and B_s^0 lifetimes
- Tagging performance
- Expectations by end of 2012

Conclusion

Introduction

Precision measurements in the B_d⁰ system by BABAR & Belle show that the phase in the CKM matrix is the main source of CP violation in B system

• Angle β is measured to 4%, angle a to 5% and angle γ to 35%

• New physics contributions are constrained to < O(10%)

• Next step is to measure CP violation in the B_s^0 system studying time dependent decay rates for B_s^0 and \overline{B}_s^0

G. Eigen, LISHEP2011, Rio de Janeiro, July 5th, 2011

Requirements for CPV Measurements

- The bb cross section in pp collisions at 7 TeV is huge -> at high luminosities LHC produces gigantic B meson samples
- ATLAS has excellent capabilities to perform time-dependent decay rate measurements
 - Reconstruct exclusive final states with good resolution
 - Measure vertices with high precision
 - Tag b flavor at production with Q_{iet} (validate with data)
- $B_s^0 \rightarrow J/\psi \Phi$ is most promising mode observed in ATLAS for B.

Need validation measurements in

The ATLAS Detector

Data Recording

- Total efficiency is >95%
- Efficiency in the subsystems is 90-100%
- Average number of interactions per crossing is 6

Measurement of Primary Vertex

- Select fully reconstructed tracks with small transverse & longitudinal impact parameter for primary vertex reconstruction
- Determine primary vertex with adaptive vertex fitting algorithm
- Remove tracks that are more than 70 incompatible with PV and use as seed for new vertex

Inner Detector Performance

- For precise measurements of secondary vertices, the performance of the Inner Detector is crucial, particularly that of the silicon pixels
- In the barrel measure $\sigma=25 \ \mu m$ for hits from tracks with p_T > 2 GeV
- In the EC measure σ=20 μm for hits from tracks with p_T> 2 GeV

ATLAS-CONF-2011-012

G Figen | TSHEP2011

G. Eigen, LISHEP2011, Rio de Janeiro, July 5th, 2011

Muon Selection

Define two sets of µ candidates used in the J/y selection

Combined µ (CB): full muon spectrometer and track measurements in inner detector with a good fit between both regions

Segment Tagged μ (ST): track measurements in Inner Detector associated to at least one hit in muon spectrometer

J/ψ Reconstruction

Di-muon Candidates / (0.01 GeV)

- Require at least 1 pixel hit & at least 4 SCT hits
- Determine p_T exclusively from Inner Detector track segment
- Select J/ψ candidate in mass windows
 - 2959-3229 MeV if both muons are in the barrel
 - 2913-3273 MeV for 1 muon in barrel, other muon in endcap
 - 2852-3332 MeV if both muons are in the endcaps
 J/ψ efficiency is uniform in p_T at ~100% G. Eigen, LISHEP2011, Rio de Jai

Observation of $B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-})K^{\pm}$

- Select additional track, assign kaon mass hypothesis
- Fit 3 track vertex; constrain $\mu^+\mu^-$ mass to m(J/ ψ)
- Do unbinned maximum likelihood fit with Gaussian signal & linear bg
- Enhance signal-to-background with transverse decay length cut

Observation of $B_d^0 \rightarrow J/\psi K^{*0} \& B_s^0 \rightarrow J/\psi \Phi L^{*0}$

- Select 2 additional tracks, assume $K^{*0} \rightarrow K^{+}\pi^{-}, \Phi \rightarrow K^{+}K^{-}$
- Fit 4-track vertex; constrain $\mu^+\mu^-$ mass to m(J/ ψ)
- Apply mass cuts on $K^+\pi^-$ around K^{*0} and on K^+K^- around Φ
- Do unbinned maximum likelihood fit with Gaussian signal & linear bg

Lifetime Measurement Methodology

• Select J/ψ candidate and add $K^+\pi^-$ or K^+K^- to select $J/\psi K^{*0}$ or $J/\psi \Phi$ For each candidate calculate the proper decay time

- $\tau = \frac{L}{\beta \gamma c}$ L: distance between primary vertex & B decay vertex $\beta \gamma$: Lorentz boost factor = p/m c: speed of light
- Precision is higher in the transverse plane

 - $\tau = \frac{L_{xy}m}{p_{T}(B)}$ $L_{xy}: L in the transverse plane p_{T}: transverse momentum m: B invariant mass$
- Perform simultaneous unbinned maximum likelihood fit to reconstructed B_d^0 (B_s^0) masses and proper decay times

 $\mathbf{L} = \prod_{i=1}^{N} \left(\mathbf{f}_{sig} \mathcal{M}_{sig}(\mathbf{m}_{i}) \mathcal{T}_{sig}(\boldsymbol{\tau}_{i}) + (1 - \mathbf{f}_{sig}) \mathcal{M}_{bg}(\mathbf{m}_{i}) \mathcal{T}_{bg}(\boldsymbol{\tau}_{i}) \right)$

Background contributions

- J/ψ from other B combined with random $K^+\pi^-$ (K^+K^-)
- J/ ψ X from signal B with/without random K⁺ π ⁻ (K⁺K⁻)

Direct J/ ψ production with random K⁺ π ⁻ (K⁺K⁻)

Results for $B_s^0 \rightarrow J/\psi \Phi$

► In $B_s^0 \rightarrow J/\psi \Phi$ CP-even and CP odd components that have different lifetimes are not symmetric \rightarrow T differs from generic B_s lifetime ATLAS-CONF-2011-092 G. Eigen, LISHEP2011, Rio de Janeiro, July 5th, 2011

B Flavor Tagging

- For tagging of B flavor at production use lepton charge or jet charge
 - $Q_{jet} = \sum_{i} q_{i} p_{i}^{\kappa} / \sum_{i} p_{i}^{\kappa}$ $q_{i} \equiv charge of track i$ $q_{i} \equiv momentum of track i$ $\kappa \equiv weight$
- The jet charge is positive for To jets and negative for b jets
- Jet consists of all tracks with $p_T > 500$ MeV, $|\eta| < 2.5$ inside a cone with opening angle $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- Remove cases where jet charge is close to zero by "exclusion cut"
- Key quantities in tagging are efficiency and dilution

$$\varepsilon_{tag} = \frac{N_r + N_w}{N_{total}} \quad D_{tag} = \frac{N_r - N_w}{N_r + N_w} = 1 - 2w_{tag} \quad N_r \equiv \text{ correctly tagged} \\ N_w \equiv \text{ wrong tagged}$$

$$v_{w} \equiv \frac{N_{w}}{N_{r} + N_{w}}$$

The true asymmetry & its error are given by

G. Eigen, LISHEP2011, Rio de Janeiro, July 5th, 2011

Conclusions

ATLAS is a well-working detector recording data with high efficiency

- ATLAS has an excellent capability to measure secondary vertices, tag the b flavor at production with high tagging effectiveness and reconstruct B exclusive final states with excellent mass resolution and high efficiency
 - ATLAS measures B⁺→J/ψK⁺, B_d⁰→J/ψK^{*0} & B_d⁰→J/ψΦ signals with low background
- ATLAS performes first lifetime measurements in B_d⁰→J/ψK^{*0} & B_d⁰→J/ψΦ
- Thus, ATLAS has excellent capabilities to measure CPV in B decays

Trigger Operations

- Trigger is organized in 3 levels
 - L1: hardware trigger
 - → 50 kHz rate
 - L2: software selection on reduced granularity (ROI)
 - → 4 kHz rate
 - EF: Based on offline reconstruction, full granularity
 - → 200 Hz rate design with peak to 600 Hz
- Rates of physics objects are very well understood

Physics rate is ~300 Hz

CALO MUON TRACKING Pipeline memories Derandomizers **Readout** drivers (RODs) Readout buffers (ROBs) Event builder Full-event buffers and processor sub-farms Data recording

Systematic Errors in B_d⁰ & B_s⁰ Lifetimes

Modeling of signal and background in ML fit
Juse alternative parameterization

	Source of systematics	Systematic uncertainty	
Fit procedure		$\delta_{\rm syst}(\tau_{\rm B_d}), {\rm ps}$	$\delta_{\rm syst}(\tau_{\rm B_s}), {\rm ps}$
\rightarrow run several thousand	Modelling signal, background	0.01	0.01
toy experiments	Time uncertainty model	0.03	0.03
	Mass window	0.01	0.015
Mass window	Alignment	0.03	0.03
→ for B _d ^o vary window	Total, quadratic sum	0.04	0.05

(5169, 5389) MeV to (5079, 5479) MeV in 14 steps

- → for B_s⁰ vary (5150, 5650) MeV to (5220, 5510) MeV in 11 steps
- Time uncertainty model
 - → assume different proper time decay models
- Choice of primary vertex
 - → use different impact parameter calculation G. Eigen, LISHEP2011, Rio de Janeiro, July 5th, 2011

ATLAS Subsystem Operation

Fraction of operational channels is close to 100% for all systems

	Channel Live Fraction		Number of Channels
TGC End Cap Muon		98.4%	320 K
RPC Barrel Muon		97.0%	370 K
CSC Muon		98.5%	31 K
MDT Muon		99.8%	350 K
L1 Muon TGC Trigger		100.0%	320 K
/L1 Muon RPC Trigger		99.5%	370 K
LVL1 Calo Trigger		99.9%	7 K
Forward Lar		99.8%	3.5 K
Had End-Cap Lar		99.6%	5.6 K
Tile Calo		97.9%	9.8 K
Lar EM Calo		99.5%	170 K
TRT		97.5%	350 K
SCT		99.1%	6.3 M
Pixel		96.9%	80 M
50%	60% 70% 80% 90% 10	00%	
23	G. Eigen, LISHEP2011, Rio de Janeiro, July 5th,	2011	31

