Direct measurement of the n_TOF NEAR neutron fluence with diamond detectors

M. Diakaki¹, M. Bacak², C. Weiss^{3,4}, E. Griesmayer^{3,4}, C. Guerrero⁵, E. Jericha³, M. Kokkoris¹, A. Mengoni^{6,7}, N. Patronis⁷, E. Stamati^{2,7}, R. Vlastou¹ +++

and the n TOF Collaboration⁸

¹National Technical University of Athens, Greece
²European Organization for Nuclear Research (CERN), Switzerland
³TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
⁴ www.cividec.at
⁵Universidad de Sevilla, Spain
⁶Agenzia Nazionale per le nuove tecnologie (ENEA), Bologna, Italy
⁷University of Ioannina, Greece
⁸www.cern.ch/n_TOF

The n_TOF NEAR station

- Very close to the Pb spallation target (~3m flight path)
- Commissioned in 2021

n_TOF mixed field irradiation places for n_TOF, R2M, R2E
 collaboration applications, along the center of the external cone aperture :

Photos from A.P. Bernardes presentation, n_TOF meeting 25/11/2021

NEUTRON FLUENCE CHARACTERISATION at NEAR (simulations)

Radial dependence of neutron fluence:

NEUTRON FLUENCE CHARACTERISATION at NEAR (experimental)

To-date:

- Based on the **Multiple Foil Activation Analysis (MAM1** and **MAM2 configurations)** and the **Moderation-Absorption technique (ANTILOPE).**
- Successful experimental campaigns in 2021, analysis ongoing.

MAM1

MAM2

ANTILOPE

• The above mentioned techniques are based on neutron ACTIVATION, no active detector yet at NEAR.

With the present LoI we **propose to measure the neutron fluence at NEAR with an active detector, based on the diamond technology**. Detector development will be implemented in order to cope with the extremely high neutron fluence.

Why diamond sensors??

- Diamond sensor (allotrope of carbon) is characterised by
- ➢ high radiation resistance,
- high thermal conductivity /low thermal expansion coefficient
- ➢ fast response time
- ➢ high rigidity, biological and chemical inertia.
- ➢ Good energy resolution (sub 1% for 5.5 MeV alpha particles)

- Successfully used in
- neutron induced reaction studies
- neutron fluence measurements,
- even in harsh radiation environments [1,2]

• Diamond sensor will be **especially developed by CIVIDEC Instrumentation [3]** for the flux measurement at NEAR:

Single crystalline sensor fabricated via the CVD (Chemical Vapour Deposition) technology.

Proposed characteristics: 50 um thickness, 4x4 mm² active surface, ⁶LiF converter

[1] E. Griesmayer et al., A novel neutron flux monitor at the Vienna TRIGA Mark II reactor, IAEA-CN-231-A.17, 2015
[2] M. Angelone and C. Verona, Review-Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments, J. Nucl. Eng. 2021, 2, 422–470
[3] https://cividec.at/

Neutron detection principle

Nuclear reaction	$E_{\mathbf{th}}$ [MeV]	$Q \ [MeV]$
$^{12}{ m C}({ m n,el})^{12}{ m C}$	0.0	0.0
$^{12}\mathrm{C}(\mathrm{n},lpha)^{9}\mathrm{Be}$	6.2	-5.7
$^{12}\mathrm{C(n,}3lpha)$	7.9	-7.3
$^{12}C(n,p)^{12}B$	13.6	-12.6
$^{12}{ m C(n,d)^{11}B}$	14.9	-13.7
$^{13}\mathrm{C}(\mathrm{n},lpha)^{10}\mathrm{Be}$	4.1	-3.8

This principle already used in fission reactors and fusion tokamaks [1]

Schematics of proposed detector setup:

[1] M. Angelone and C. Verona, J. Nucl. Eng. 2021, 2, 422–470

Estimated diamond det. response at NEAR (I)

Expected Counting Rate estimation, based on:

Calculation performed by Christina Weiss

Detector current will be measured to extract the neutron fluence

Estimated diamond det. response at NEAR (II)

Expected Counting Rate estimation, based on:

Calculation performed by Christina Weiss

Estimated diamond det. response at NEAR (III)

Detector Current

Strong fluctuation of detector current=>

Detector signal will be splitted and treated with 2 different preamplifier gains + 2 ADC channels . Development ongoing in Vienna.

Storage of waveforms at 10-12 bit oscilloscopes for consequent offline analysis.

Estimated diamond det. response at NEAR (IV)

• Very low intensity pulses (5e10 ppp):

Measurement of the AC detector signal will be possible

Proposed planning of measurements

$> 7 \times 10^{17}$ protons are requested in total, for the following planning:

- 2×10^{17} debugging + intensity ramp
- 2×10^{17} central position neutron fluence measurement
- 1 × 10¹⁷ beam homogeneity scan of the NEAR collimator 10 × 10 cm² in 0.5 cm steps (detector mounted on special XY-table that can be moved remotely)
- 1×10^{17} **neutron fluence measurement** with B₄C filter, useful for activation measurements [1]
- 1 × 10¹⁷ neutron fluence measurement without ⁶Li converter, central position (elastic ¹²C + delayed photons estimation)
- The number/splitting of protons is indicative and will highly depend on the performance of the detector and includes contingency for parallel detector and electronic chain development, which in consequence might require splitting the measurement in two time periods to leave time for detection system adaptation (for example one run in 2022 and one run in 2023).

Any suggestions, remarks, propositions, new members at the "DEAR" collaboration are more than welcome ! Thank you!

Extra slides

Conversion yield

Energy Interval	ε (ENDF/B-VIII.0)	Q _μ [fC]
E _n < 10 keV	⁶ Li(n,a)t	Q-value/2/ E_{ion} * q_{el} = 29.4 fC
10 keV < E _n < 1 MeV	⁶ Li(n,a)t ¹² C(n,el)	Q-value/2/ $E_{ion}^*q_{el} = 29.4 \text{ fC}$ f ₁ (E_n), see below
E _n > 1 MeV	¹² C(n,tot)	f ₂ (E _n), Geant4 P. Kavrigin

 Table 1. Diamond parameters ¹.

Parameter	Value
Atomic Number	6
E_g at 300 K (eV)	5.470
Density (g·cm ^{-3})	3.515
ε_p (eV)	13
Fusion temperature (°C)	4100
Electron mobility ($cm^2V^{-1}s^{-1}$) at 300 K	1800–2200
Hole mobility $(cm^2V^{-1}s^{-1})$ at 300 K	1200–1600
Breakdown voltage (Vcm ⁻¹)	>10 ⁷
Thermal conductivity σ_T (Wcm ⁻¹ K ⁻¹)	20
Saturation velocity v_{sat} (cm s ⁻¹)	$2.7 imes 10^7$
Resistivity ρ (ohm cm)	>10 ¹³
Intrinsic carrier density at 300 K (cm^{-3})	<10 ³
Dielectric constant	5.7
Energy to displace an atom (eV) 1	37.5–47.6

Gamma background, grossier estimation from EAR2 simulations

In Figure 5.17 the conversion yield of the γ interaction in diamond is shown.

Delayed gammas not expected to significantly influence the measurement