2HDM Neutial Scalans a Life

Shufang Su • U. of Arizona

Talk based on work:
2004.04172 (F. Kling, SS, W. Su)

ECFA_HF_WG1
May 25, 2022
S. Su

Motivation

Started as recast of LHC search: $A \rightarrow H Z, H \rightarrow A Z$

- limited interpretation of 2HDM parameter space
- mostly for Type-II
= comprehensive study of current direct/indirect constraints (LHC + more) on 2HDM parameter space
- complementarity between direct and indirect search
- complementarity between different direct search channel
- degenerate mass/mass hierarchy
- Type-I \& Type-II (easily extend to other types)

Outline

- Why 2HDM
- Basics of 2HDM
- Various constraints
- Degenerate case
- Mass Hierarchy case
- Conclusion

Models with extended Higgs sector: arise in natural theories of EWSB

- Higgs sector of MSSM/NMSSM
- Generic 2HDM
- Little Higgs, twin Higgs ...
- Composite Higgs models ...
- SM+singlet: parametrized by a simple mixing parameter
- 2HDM: covers board class of known models
- Allow for convenient parametrization
- Many features shared by many extended EWSB sectors

2HDM Higgs Sector

- Two Higgs Doublet Model (CP-conserving)

$$
\left.\left.\left.\begin{array}{c}
\Phi_{i}=\binom{\phi_{i}^{+}}{\left(v_{i}+\phi_{i}^{0}+i G_{i}\right) / \sqrt{2}}
\end{array} \begin{array}{c}
v_{1}^{2}+v_{2}^{2}=v^{2} \quad v=246 \mathrm{GeV} \\
t_{\beta}=v_{2} / v_{1}
\end{array}\right), \begin{array}{c}
H^{0} \\
h^{0}
\end{array}\right)=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha \cos \alpha
\end{array}\right)\binom{\phi_{1}^{0}}{\phi_{2}^{0}}, \begin{array}{c}
A=-G_{1} \sin \beta+G_{2} \cos \beta \\
H^{ \pm}=-\phi_{1}^{ \pm} \sin \beta+\phi_{2}^{ \pm} \cos \beta
\end{array}\right), ~ \$
$$

after EWSB, 5 physical Higgses CP-even Higgses: h, H, CP-odd Higgs: A, Charged Higgses: $\mathrm{H}^{ \pm}$

Parametrization

- parameters (CP-conserving, flavor limit, Z_{2} symmetry)

- Search for extra Higgses
\Rightarrow Precision Higgs study: couplings of the SM-like Higgs
= Direct search of extra Higgses: direct evidence for BSM new physics

Hings Couplings

- h/H VV coupling

$$
\left.g_{H^{0} V V}=\frac{m_{V}^{2}}{v} \cos (\beta-\alpha), \quad g_{h^{0} V V}=\frac{m_{V}^{2}}{v} \sin (\beta-\alpha)\right)
$$

Alignment limit: h $125 \mathrm{GeV}, \cos (\beta-\alpha) \sim 0$

LEP limit: no $\mathrm{e}^{+} \mathrm{e} \rightarrow \mathrm{Z} \rightarrow \mathrm{ZH}, \mathrm{H}$ could still be light.

- Higgs-Higgs-V coupling

$$
\begin{aligned}
g_{A H^{0} Z}= & -\frac{q \sin (\beta-\alpha)}{2 \cos \theta_{w}}\left(p_{H^{0}}-p_{A}\right)^{\mu}, \quad g_{A h^{0} Z}=\frac{g \cos (\beta-\alpha)}{2 \cos \theta_{w}}\left(p_{h^{0}}-p_{A}\right)^{\mu}, \\
g_{H^{ \pm} H^{0} W^{\mp}}=\frac{\left.\frac{g \sin (\beta-\alpha)}{2} p_{H^{0}}-p_{H^{ \pm}}\right)^{\mu}, \quad g_{H^{ \pm} h^{0} W^{\mp}}=\frac{g \cos (\beta-\alpha)}{2}\left(p_{h^{0}}-p_{H^{ \pm}}\right)^{\mu},}{} & g_{H^{ \pm} A W \mp}=\frac{g}{2}\left(p_{A}-p_{H^{ \pm}}\right)^{\mu},
\end{aligned}
$$

Two non-SM like Higgses have unsuppressed couplings to gauge boson.

LEP limit: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{Z} \rightarrow A H, m_{H}+m_{A}>E_{c m}$ \xrightarrow{L}

Higgs Couplings

- Yukawa couplings

	ϕ_{1}	ϕ_{2}
Type I		$\mathrm{u}, \mathrm{d}, \mathrm{I}$
Type II	d, I	u
Type L	I	u, d
Type F	d	u, I

	ξ_{H}^{u}	ξ_{H}^{d}	ξ_{H}^{ℓ}	ξ_{A}^{u}	ξ_{A}^{d}	ξ_{A}^{ℓ}
Type-I	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$	$-\cot \beta$	$-\cot \beta$
Type-II	$\cot \beta$	$-\tan \beta$	$-\tan \beta$	$\cot \beta$	$\tan \beta$	$\tan \beta$
Type-L	$\cot \beta$	$\cot \beta$	$-\tan \beta$	$\cot \beta$	$-\cot \beta$	$\tan \beta$
Type-F	$\cot \beta$	$-\tan \beta$	$\cot \beta$	$\cot \beta$	$\tan \beta$	$-\cot \beta$

Alignment limit: hff, hVV coupling \Rightarrow SM

- tri-Higgs couplings

Alignment limit: no $\mathrm{H} \rightarrow \mathrm{AA}, \mathrm{H} \rightarrow \mathrm{hh}$ unsuppressed: $h \rightarrow$ AA

Decay

- Conventional search channel (even for non-SM Higgs): Yү, ZZ, WW, tT, $\mu \mu$, bb, tt
- Exotic search channel ($\rightarrow 2$ light Higgs, light Higgs+V)

Constraints

Neutral scalars

- theoretical constraints vacuum stability/Unitarity/perturbativity/... $m_{12^{2}}=m_{H^{2}} \sin \beta \cos \beta$
- Precision Higgs measurements (μ, Γ_{h})
- Conventional channels: $\mathrm{yy}, \mathrm{ZZ}, \mathrm{WW}, \mathrm{tr}, \mu \mu$, bb, tt
- Exotic decay into $h: A \rightarrow h Z, H \rightarrow h h$
- Exotic decay of $h S M: h \rightarrow A A, h \rightarrow H H$
- Exotic decay of BSM sector: $A \rightarrow H Z, H \rightarrow A Z$
- LEP searches: $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \rightarrow \mathrm{Z} \rightarrow \mathrm{HA}, \mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \rightarrow \mathrm{Z} \rightarrow \mathrm{ZH}$
- SM non-resonant processes: ttZ, tttt

Additional constraints arise for charged scalars

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathbf{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

O degenerate: $m_{H p m}=m_{\mathbf{H}}=m_{A}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\phi_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathbf{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathrm{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathrm{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathrm{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathbf{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\phi_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathrm{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I

(o degenerate: $m_{H p m}=m_{\mathbf{H}}=\mathbf{m}_{\mathbf{A}}$ no BSM sector exotic decay allow $\mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$ (away from alignment)

- Type I: $\mathbf{\phi}_{2}, \mathbf{u} / \mathrm{d} / \mathrm{I}$ BSM Higgs Yukawa ~ 1/tan β

Degenerate Case: Type I \& Type II

- Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$

BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{I}$

BSM H/A,u ~ 1/tan $\beta ; d / I \sim \tan \beta$

12

Degenerate Case: Type I \& Type II

- Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$

BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{I}$ BSM H/A,u ~ 1/tan $\beta ; d / I \sim \tan \beta$

12

Degenerate Case: Type I \& Type II

© Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$
BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{I}$

BSM H/A,u $\sim 1 / \tan \beta ; d / I \sim \tan \beta$

Degenerate Case: Type I \& Type II

© Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$
BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{l}$

BSM H/A,u ~ 1/tan β; $d / I \sim \tan \beta$

Degenerate Case: Type I \& Type II

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{l}$ BSM H/A,u ~ 1/tan β; d/I ~ $\tan \beta$

12

Degenerate Case: Type I \& Type II

- Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$

BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{I}$

BSM H/A,u ~ 1/tan $\beta ; d / I \sim \tan \beta$

12

Degenerate Case: Type I \& Type II

- Type I: $\phi_{1}, \mathbf{u} / \mathrm{d} / \mathrm{I}$

BSM Higgs Yukawa ~ 1/tan β

- Type II $\phi_{1}, \mathbf{u} ; \phi_{2}, \mathrm{~d} / \mathrm{I}$

BSM H/A,u ~ 1/tan $\beta ; d / I \sim \tan \beta$

12

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathbf{A} \rightarrow \mathbf{Z H}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Type-I: $\cos (\beta-\alpha)=0$ and $\tan \beta=1.5$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Type-I: $\cos (\beta-\alpha)=0$ and $\tan \beta=1.5$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Type-I: $\cos (\beta-\alpha)=0$ and $\tan \beta=1.5$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Type-I: $\cos (\beta-\alpha)=0$ and $\tan \beta=1.5$

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-\alpha)$ vs. $\tan \beta$

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-\alpha)$ vs. $\tan \beta$

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-\alpha)$ vs. $\tan \beta$

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-a)$ vs. $\tan \beta$

Non-Degenerate Case: Type I \& Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-a)$ vs. $\tan \beta$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type I

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-\alpha)$ vs. $\tan \beta$

insensitive to align limit

Degenerate vs. non-Deg: Type I

m_{A} vs. $\tan \boldsymbol{\beta}$

Degenerate vs. non-Deg: Type II

m_{A} Vs. $\tan \beta$

Conclusion

- exotic mode such as $A \rightarrow Z H, H \rightarrow Z A$
\Rightarrow once open, dominate
\Rightarrow limits from conventional searches relaxed.
\Rightarrow offer alternative discovery channels
© theoretical considerations + EW: $\Delta m>200 \mathrm{GeV}$ difficult for $\mathrm{m}>1 \mathrm{TeV}$
\Rightarrow LHC most relevant machine for probing non-degenerate case
- H/A \rightarrow TT,YY most sensitive conventional channel
- $\mathrm{m}_{\mathrm{A} / \mathrm{H}} \sim 100 \mathrm{GeV}$ still challenge
- non-resonant search ttZ, tttt relevant
- exotic decay complementary to
- Higgs precision: insensitive to alignment limit
$\Rightarrow \mathrm{A} \rightarrow \mathrm{Zh}, \mathrm{H} \rightarrow \mathrm{hh}, \mathrm{H} \rightarrow \mathrm{VV}$: vanish under the alignment limit
- other exotic mode: $\mathrm{H}^{ \pm} \rightarrow A W / H W, A / H \rightarrow \mathrm{H} \pm W \mp$ S. Su

Backup Slides

Higgs Precision Constraints

Charged Higgs

- EW precision constraints $m_{H p m} \sim m_{H}, m_{A}, m_{h}$
- direct searches
$\mathrm{H}^{ \pm \rightarrow \mathrm{CS}}, \mathrm{Tv}$, tb
- flavor constraints
S. Su

Non-Degenerate Case: Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

Non-Degenerate Case: Type II

- Non-degenerate: $\mathrm{A} \rightarrow \mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{ZA}$

$\cos (\beta-a)$ vs. $\tan \beta$

