

Light Higgs Bosons at Future e + e - Colliders

Sven Heinemeyer, IFT (CSIC, Madrid)

zoom, 05/2022

- Introduction
- The evidence
- Physics opportunities at e^+e^- colliders
- Conclusions

1. Introduction

The SM cannot be the ultimate theory!

Some facts:

- 1. gravity is not included
- 2. the hierarchy problem
- 3. no unification of the three forces
- 4. Dark Matter is not included
- 5. Baryon Asymmetry of the Universe cannot be explained
- 6. neutrino masses are not included

7. . . .

There are two complementary ways:

1. Direct searches

- direct production of BSM particles at (high-energy) colliders
- obvious at high \sqrt{s} , but also lower \sqrt{s} is possible
- mostly at pp colliders
- also (future) e^+e^- colliders have a chance (clean environment, uncolored particles)

2. Indirect searches

- high precision measurement of "SM processes" $((g-2)_{\mu}, M_W, ...)$
- search for processes forbidden/suppressed in the SM
- possible at high and low \sqrt{s}
- high precision required on the experimental and theoretical side

2. The evidence

Experimental hint: Search for $pp \rightarrow \phi \rightarrow \gamma\gamma$: excess at $m_{\phi} \sim 95 \text{ GeV}$

[CMS '17, ATLAS '18, S.H., T. Stefaniak '18]

 $\mu_{\gamma\gamma} = 0.6 \pm 0.2$

 \Rightarrow if there is something, it would look exactly like this!

Remember the LEP excess?

The new $\tau^+\tau^-$ excess

Can you spot the excess?

The new $\tau^+\tau^-$ excess

Can you spot the excess? At 95 - 100 GeV?

Better visible here, focusing on 100 GeV:

[CMS '22]

\Rightarrow clear excess of $\sim 3\,\sigma$ at $\sim 100~{\rm GeV}$

Now we have three excesses at $\sim 95~{
m GeV}$

 $\mu^{\rm exp}_{bb}=0.117\pm0.057,\quad\mu^{\rm exp}_{\gamma\gamma}=0.6\pm0.2,\quad\mu^{\rm exp}_{\tau\tau}=1.2\pm0.5$ corresponding to

$$\mu_{bb}^{exp} \sim 2 \sigma, \quad \mu_{\gamma\gamma}^{exp} \sim 3 \sigma, \quad \mu_{\tau\tau}^{exp} \sim 2.4 \sigma$$

Three (effectively) independent channels \Rightarrow no LEE (as theorist I am allowed to add naively)

 \Rightarrow \sim 4.3 σ

$$\chi_{95}^2 = \frac{(\mu_{bb}^{\text{theo}} - 0.117)^2}{(0.057)^2} + \frac{(\mu_{\gamma\gamma}^{\text{theo}} - 0.6)^2}{(0.2)^2} + \frac{(\mu_{\tau\tau}^{\text{theo}} - 1.2)^2}{(0.5)^2}$$

Can we fit all excesses together?

Simple example of an extended Higgs sector: Next-Two Higgs Doublet Model (N2HDM): \rightarrow (nearly) NMSSM type Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}, \ \Phi_S = v_S + \rho_S$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \frac{\lambda_{6}}{8} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) \Phi_{S}^{2}$$

 Z_2 symmetry: $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$, $\Phi_S \rightarrow \Phi_S$

 Z'_2 symmetry: $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow \Phi_2$, $\Phi_S \rightarrow -\Phi_S$ (broken by $v_S \Rightarrow$ no DM)

Physical states: h_1 , h_2 , h_3 (CP-even), A (CP-odd), H^{\pm} (charged)

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons
type I	Φ2	Φ2	Φ2
type II	Φ2	Φ1	Φ_1
type III (lepton-specific)	Φ2	Φ2	Φ1
type IV (flipped)	Φ2	Φ1	Φ2

 \Rightarrow exactly as in 2HDM

Three neutral CP-even Higgses:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix}, \quad R = \begin{pmatrix} c_{\alpha_1}c_{\alpha_2} & s_{\alpha_1}c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1}s_{\alpha_2}s_{\alpha_3} + s_{\alpha_1}c_{\alpha_3}) & c_{\alpha_1}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ -c_{\alpha_1}s_{\alpha_2}c_{\alpha_3} + s_{\alpha_1}s_{\alpha_3} & -(c_{\alpha_1}s_{\alpha_3} + s_{\alpha_1}s_{\alpha_2}c_{\alpha_3}) & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$$

"Physical" input parameters:

 $\alpha_{1,2,3}$, $\tan \beta$, v, v_S , $m_{h_{1,2,3}}$, m_A , $M_{H^{\pm}}$, m_{12}^2

Needed to fit the three excesses: $m_{h_1} \sim 95 \; {
m GeV}$, $m_{h_2} \sim 125 \; {
m GeV}$

- $-c_{h_1VV}^2$ strongly reduced for μ_{bb}
- $-c_{h_1bb}$ reduced to enhance $BR(h_1 \rightarrow \gamma \gamma)$
- $c_{h_1 t t}$ not reduced for $\mu_{\gamma \gamma}$
- $c_{h_1 au au}$ not reduced for $\mu_{ au au}$

	Decrease $c_{h_1 b \overline{b}}$	No decrease $c_{h_1 t \overline{t}}$	No enhancement $c_{h_1 auar au}$
type I	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-)	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-($\left(\frac{R_{12}}{s_{\beta}}\right)$:-)
type II	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}})$:-)	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-(
type III	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}}) :-($	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-(
type IV	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}})$:-)	$(\frac{R_{12}}{s_{\beta}})$:-)

Type II and IV: c_{h_1bb} and c_{h_1tt} independent Type IV $c_{h_1\tau\tau}$ can be enhanced (together with c_{h_1tt})

 \Rightarrow only type IV can fit all three excesses

 \Rightarrow Parameter scan \Rightarrow ScannerS

Constraints:

- Tree-level perturbativity \Rightarrow ScannerS
- Minimum of potential is global minimum ⇒ ScannerS
 ... or sufficiently long-lived ⇒ Evade
- Higgs searches at LEP, Tevatron, LHC \Rightarrow HiggsBounds
- SM-like Higgs properties \Rightarrow HiggsSignals (N2HDECAY, SusHi) $\Rightarrow \chi^2_{125}$ (with $\chi^2_{SM,125} = 84.4$)
- Flavor physics (mainly $BR(B_s \rightarrow X_s \gamma)$, $\Delta M_{B_s}) \Rightarrow SuperIso$ bounds
- Electroweak precision data $(T \text{ and } S) \Rightarrow \text{ScannerS}$

N2HDM type II vs. type IV

Color coding: χ^2_{125} from HiggsSignals \Rightarrow only type IV can fit the $\gamma\gamma$ and $\tau\tau$ excesses

Color coding: χ^2_{125} from HiggsSignals \Rightarrow type IV can fit the $\gamma\gamma$, $\tau\tau$ and bb excesses

 $gg \to h_{95} \to \tau^+ \tau^-$

gray lines: central values of excesses

 \Rightarrow type IV can fit the $\gamma\gamma$, $\tau\tau$ and bb excesses very well

[T. Biekötter, S.H., G. Weiglein '22]

3. Physics opportunities at e^+e^- colliders

Example for discovery potential for new light states: Sensitivity at 250 GeV with 500 fb⁻¹ to a new light Higgs

[Taken from G. Weiglein '18]

What can we learn from future measurements?

- LHC h_{125} coupling measurements
- HL-LHC h_{125} coupling measurements
- ILC h_{125} coupling measurements
- direct production of ϕ_{95} at the LHC
- direct production of ϕ_{95} at the HL-LHC
- direct production of ϕ_{95} at the ILC
- ILC ϕ_{95} coupling measurements
- production of other BSM Higgs bosons at the LHC/HL-LHC/ILC/...

ILC = ILC (or other e^+e^- collider, operating at $\sqrt{s} = 250$ GeV)

What can we learn from future measurements?

- LHC h_{125} coupling measurements - HL-LHC h_{125} coupling measurements \Leftarrow focus - ILC h_{125} coupling measurements \leftarrow focus - direct production of ϕ_{95} at the LHC - direct production of ϕ_{95} at the HL-LHC - direct production of ϕ_{95} at the ILC \leftarrow focus - ILC ϕ_{95} coupling measurements \leftarrow focus
- production of other BSM Higgs bosons at the LHC/HL-LHC/ILC/. . .

ILC = ILC (or other e^+e^- collider, operating at $\sqrt{s} = 250$ GeV)

\Rightarrow measurable deviation from the SM

ILC production of the light scalar in the N2HDM type IV:

[T. Biekötter, S.H., G. Weiglein – PRELIMINARY]

\Rightarrow new state easily in the reach of the ILC \Rightarrow coupling measurements

ILC ϕ_{95} coupling measurements at the ILC

[T. Biekötter, S.H., G. Weiglein – PRELIMINARY]

green circles: ϕ_{95} coupling precision at the ILC250

\Rightarrow model distinction possible via coupling measurements at the ILC

4. Conclusinos

• Three (mostly) independent excesses in the search for light Higgs bosons at $\sim 95~{\rm GeV}$:

 $\mu_{bb}^{\rm exp}=0.117\pm0.057,\quad\mu_{\gamma\gamma}^{\rm exp}=0.6\pm0.2,\quad\mu_{\tau\tau}^{\rm exp}=1.2\pm0.5$ corresponding to

$$\mu_{bb}^{exp} \sim 2 \sigma, \quad \mu_{\gamma\gamma}^{exp} \sim 3 \sigma, \quad \mu_{\tau\tau}^{exp} \sim 2.4 \sigma$$

 $\Rightarrow \sim 4.3 \sigma$

 \Rightarrow no LEE (as theorist I am allowed to add naively)

• Physics opportunites at e^+e^- colliders:

- coupling measurements of the h_{125}
 - \Rightarrow deviations from the SM will be visible
- production of the h_{95}
 - \Rightarrow easily possible at the ILC

(or other e^+e^- collider, operating at $\sqrt{s} = 250$ GeV)

- coupling measurement of the h_{95}
 - \Rightarrow determination of underlying parameters

Higgs Days at Santander 2022 Theory meets Experiment 5-9 September

EXCELENCE SEVERO OCHOA

INCELENCE MARIA DE MAEZ-U

Contact: Sven.Heinemeyer@cern.ch Local: Alicia.Calderon@cern.ch Gervasio.Gomez@cern.ch http://hdays.csic.es

Sven Heinemeyer – ECFA HF WG1: 1st Workshop of WG1-SRCH, 25.05.2022

De-IF(A)

Further Questions?