

Light scalars beyond the SM: collider searches and astrophysical constraints

Yongchao Zhang

Southeast University, Nanjing, China

May 25, 2022, 1st ECFA WG1-SRCH Workshop CERN (online)

Frontiers of particle physics & cosmology

High-Energy frontier High-Intensity frontier Cosmic frontier

Interdisciplinary:

- particle physics
- nuclear physics
- astronomy
- astrophysics & cosmology
- engineering & industry
- applications
- economy

• ...

Productions of S from SM particles

• Production from SM particle decays, scatterings, or bremsstrahlung processes

$$x \rightarrow S + y$$
, $x + y \rightarrow x/z + S$, $x + y \rightarrow x + y + S$

• Playing the role of mediator [s- or t/u-channel]

See the talks of Kanazawa, Bandyopadhyay, Gabrielli & Cacciapaglia for axion/ALP (and other) searches.

Flavor signals of S

• Quark flavor violating signals

Belanger, Ghosh, Godbole, Guchait & Sengupta '14; Herrero-Garcia, Nebot, Rajec, White & Williams '20; Altmannshofer & Zupan '22...

•
$$S \rightarrow ds, sb, db, uc$$

▶ $t \rightarrow uS, cS$

•
$$K - \bar{K}$$
, $B_{d,s} - \bar{B}_{d,s}$, $D - \bar{D}$ mixing

► $B \to X_s \gamma$, $B \to K^{(*)} \gamma$ ($K \to \pi \gamma$ forbidden by Lorentz invariance)

• Charged lepton flavor violating signals

Hou & Wong '96; Herrero-Garcia, Rius, Santamaria '16; Dev, Mohapatra & YCZ '18; Li & Schmidt '19; Arganda, Marcano, Mileo, Morales & Szynkman '19; YCZ '22...

•
$$S \to \ell_{\alpha} \ell_{\beta}$$

•
$$\ell_{\beta} \to \ell_{\alpha}$$

$$\blacktriangleright \ \ell_{\delta} \to \ell_{\alpha} \ell_{\beta} \ell_{\gamma}$$

electron & muon g - 2

Production of H at lepton colliders

• Model-independent effective LFV couplings of H

 $\mathcal{L}_{Y} = h_{\alpha\beta}\bar{\ell}_{\alpha, L}H\ell_{\beta, R} + \text{H.c.}.$

on-shell production

• Off-shell production (at resonance when $m_H \simeq \sqrt{s}$)

See the talks of Robens, Heinemeyer, W. Su & Klamka for more channels.

Prospects of *H* at high-energy e^+e^- colliders

Dev, Mohapatra & YCZ '18 PRL; '18 PRD

- > $\gamma\gamma$ channel: laser photon collision.
- Assuming the dominant decay mode $H \rightarrow \mu^{\pm} \tau^{\mp}$ (left panel).
- ► The muon g 2 discrepancy can be directly tested at future lepton colliders via the LFV signals of H.

Couplings of ϕ with neutrinos

• Effective couplings of ϕ with ν 's $[L(\phi) = -2]$:

Berryman, de Gouvea, Kelly & Zhang '18; Kelly & Zhang '19; de Gouvea, Dev, Dutta, Ghosh, Han & YCZ '19; Dev, Dutta, Ghosh, Han, Qin & YCZ '21

$$rac{1}{\Lambda^2}(LH)(LH)\phi \Longrightarrow \mathcal{L} = rac{1}{2}\lambda_{lphaeta}\phi\,\nu_{lpha}
u_{eta}$$

Signals @ LHC

Figure:
$$uu \rightarrow dd + \ell_{\alpha}^{+} \ell_{\beta}^{+} + \phi$$

Prospects @ (HL-)LHC

de Gouvêa, Dev, Dutta, Ghosh, Han & YCZ '19

Similar prospects for $\lambda_{ee, \mu\mu}$. See the talks of Kanazawa, Lagouri, Bethani, Richard, Xie & S. Su for more searches @ LHC.

S production @ DUNE

Berryman, de Gouvêa, Fox, Kayser, Kelly & Raaf '20 [JHEP]; Batell, Pospelov & Ritz '11 [PRD]

see the talks of Sakaki, Schäfer & Ueda for other LLP searches.

 $\Gamma(K^{\pm} o \pi^{\pm} S) \simeq rac{m_{K^{\pm}} |y_{sd}|^2 \sin^2 \vartheta}{64\pi}$ $\times \frac{m_{K^{\pm}}^2}{m_{\mathsf{S}}^2} \lambda(m_{K^{\pm}}, m_{\pi^{\pm}}, m_{\mathsf{S}}),$ $\Gamma(K_L o \pi^0 S) \simeq rac{m_{K_L} \left({
m Re} \, y_{sd}
ight)^2 \sin^2 artheta}{64 \pi}$ $\times \frac{m_{\mathcal{K}^0}^2}{m_{\mathsf{S}}^2} \lambda(m_{\mathcal{K}_L}, m_{\pi^0}, m_{\mathsf{S}}),$ $y_{sd} = \frac{3\sqrt{2}G_F m_t^2 V_{ts}^* V_{td}}{16\pi^2} \frac{m_S}{\sqrt{2}V_{\rm FW}}$

 $pp \rightarrow ppS$ process contribution is comparatively small. [Batell, Berger & Ismail '19 [PRD]]

Yongchao Zhang (SEU)

light BSM scalars

S prospects @ DUNE in $U(1)_{B-L}$ model

Dev, Dutta, Kelly, Mohapatra & YCZ '21;

see Berryman, de Gouvêa, Fox, Kayser, Kelly & Raaf '19 for prospects without Z'

Figure: Basic stellar evolution

- High stellar density (in the core);
- Unique environment to produce copiously S;
- Raffelt criterion: the energy loss due to *S* can not exceed that from photon/neutrino emission [Raffelt '96];
- One of the multi-messengers to probe the stars: complementary to detection of neutrinos/GRs/GWs in some cases...

Production of S in supernova core

Dev, Mohapatra & YCZ '20 JCAP

Figure: $N + N \rightarrow N + N + S$

• Dominant contributions: SNN coupling $+ S\pi\pi$ coupling

$$\begin{split} \mathcal{L} &= \sin \theta S \left[y_{hNN} \overline{N} N + A_{\pi} (\pi^0 \pi^0 + \pi^+ \pi^-) \right] \,, \\ &\quad y_{hNN} \sim 10^{-3}, \\ \mathcal{A}_{\pi} &= \frac{2}{9 v_{\rm EW}} \left(m_5^2 + \frac{11}{2} m_{\pi}^2 \right) \sim 10^{-3} m_{\pi} \end{split}$$

Supernova luminosity limits

Dev, Mohapatra & YCZ '20 JCAP

Figure: T = 30 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³, $R_c = 10$ km

- Purple (orange) regions: luminosity limit of $5(3) \times 10^{53}$ erg/sec;
- The supernova limits can be improved at IceCube-DeepCore, Hype-Kamiokande, JUNO & DUNE.

Yongchao Zhang (SEU)

Supernova profiles

Fischer, Chakraborty, Giannotti, Mirizzi, Payez & Ringwald '16;

Nakazato, Sumiyoshi, Suzuki, Totani, Umeda & Yamada '12; Chang, Essig & McDermott '16

Updated supernova limits

Balaji, Dev, Silk & YCZ '22

- Luminosity limit of 3×10^{52} erg/sec;
- Including dependence on supernova profiles;
- Including geometry for decay and absorption of S in the star;
- Including dependence on $\lambda(r; E_S)$;
- Excluding the cosmological "blind spot". Ibe, Kobayashi, Nakayama & Shirai '21

Cooling of neutron stars due to S

Dev, Fortin, Harris, Sinha & YCZ '21

Including nuclear EoS. Can be compared to lifetime of NS merger remnants.

Baiotti & Rezzolla '16; Lucca & Sagunski '20

Equilibration time scale

Dev, Fortin, Harris, Sinha & YCZ '21

Trapped in the stars, S thermalizes quickly with matter.

Comparison with κ_{ν}

Dev, Fortin, Harris, Sinha & YCZ '21

High thermal conductivity due to BSM light scalar!

Production channels in the Sun

Dev, Mohapatra & YCZ '21 JCAP

- e N bremsstrahlung: $y_N \sim 10^{-3}$;
- Compton: $y_e \sim 10^{-6}$;
- Primakoff: suppressed by loop-level $S\gamma\gamma$ coupling;
- Plasma: $\propto y_e^2$, suppressed by small Yukawa coupling. Hardy & Lasenby '17 JHEP

Solar limits on S

Dev, Mohapatra & YCZ '21 [JCAP]; Balaji, Dev, Silk & YCZ '22

- Including dependence on solar profiles;
- Including geometry for decay and absorption of S in the Sun;
- Including dependence on $\lambda(r; E_S)$.

More stellar limits on S

Dev, Mohapatra & YCZ '21 [JCAP]; Balaji, Dev, Silk & YCZ '22

Figure: Including only geometry and dependence on $\lambda(E_S)$.

Star	Core composition	T [keV]	$n_{e} [{\rm cm}^{-3}]$	<i>R</i> [cm]	$\mathcal{L}/\mathcal{L}_{\odot}$
RGs	⁴ He	10	$3 imes 10^{27}$	$6 imes 10^8$	2.8
WDs	50% ¹² C 50% ¹⁶ O	6	10 ³⁰	10 ⁹	10^{-5}

Conclusion

- Depending on the couplings with SM particles, light scalar S can be searched in a large variety of flavor signals, e.g. LFV signals.
- With couplings to neutrinos, light scalars can induce same-sign dilepton signals at the (HL-)LHC and future 100 TeV colliders.
- If sufficiently light, *S* can be searched in some of the high-intensity experiments, e.g. DUNE, depending on the underlying theories.
- SN1987A data exclude the mixing of S with SM Higgs at $1.0 \times 10^{-7} \lesssim \sin \theta \lesssim 5.0 \times 10^{-5}$ for scalar mass up to 238 MeV.
- The Sun, white dwarfs and red giants can exclude scalar mixing down to the order of 10^{-18} .
- NS mergers can also provide complementary limits on *S*, depending largely on NS parameters and observations.

Thank you very much!

backup slides

Benchmark points of S decay BRs

Dev, Dutta, Kelly, Mohapatra & YCZ '21

Figure: Decay BRs of *S* with $\sin \vartheta = 10^{-4}$.

scalar mixing : $S \rightarrow e^+e^-, \ \mu^+\mu^-, \ \gamma\gamma, \ \pi\pi$ gauge coupling : $S \rightarrow Z'Z'$

Numbers of Z' @ DUNE in presence of S

Dev, Dutta, Kelly, Mohapatra & YCZ '21

- Much more Z' can be produced from $S \rightarrow Z'Z'$.
- Color change: a factor of 10.

Improved Z' prospects @ DUNE

Dev, Dutta, Kelly, Mohapatra & YCZ '21

Lab limits from [Bauer, Foldenauer & Jaeckel '18 [JHEP]]

BBN & SN1987A limits from [Knapen, Lin & Zurek '17 [PRD]; Croon, Elor, Leane & McDermott '21 [JHEP]]

Assuming zero backgrounds & 10 signal events [Berryman, de Gouvêa, Fox, Kayser, Kelly & Raaf '20 JHEP]

Improving the pure Z' case by up to a factor of 45.

- dashed line: current S limits;
- dot-dashed line: future *S* limits

Cancellation at the leading order

Dev, Mohapatra & YCZ '20 JCAP

• To the LO of $m_S^2/m_N E_S$:

$$\begin{split} \mathcal{M}_{a} + \mathcal{M}_{b} + \mathcal{M}_{c} + \mathcal{M}_{d} &\simeq 0 \,, \\ \mathcal{M}_{a'} + \mathcal{M}_{b'} + \mathcal{M}_{c'} + \mathcal{M}_{d'} &\simeq 0 \,. \end{split}$$

• Expand to the NLO of $m_S^2/m_N E_S$:

$$\frac{1}{(p_i \pm k_S)^2 - m_N^2} \simeq \frac{1}{\pm 2m_N E_S + m_S^2} \simeq \frac{1}{\pm 2m_N E_S} \left[1 \mp \frac{m_S^2}{2m_N E_S} \right]$$

- ▶ The contributions of *SNN* diagrams are suppressed by the ratio $(m_S/E_S)^4$ in the limit of small m_S .
- ► Including all high order terms will reduce the a^(*t*) through d^(*t*) diagram amplitudes by a factor of 1/2 [Dev, Fortin, Harris, Sinha & YCZ '22].
- Very different from the axion/ALP and dark photon cases. [Chang, Essig & McDermott '17 JHEP; '18 JHEP]

Comparison of different contributions

Figure:
$$T = 30$$
 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³, sin $\theta = 10^{-6}$

• *I_A*: *SNN* diagrams:

$$\propto y_{hNN}^2 \left(\frac{m_S}{E_S}\right)^4 \iff \text{ cancellation}$$

• \mathcal{I}_B : $S\pi\pi$ diagrams:

$$\propto \left(\frac{m_N}{v_{\rm EW}}\right)^2 \left[\left(\frac{m_S}{T}\right)^2 \left(\frac{T}{m_N}\right) + \frac{11}{2} \frac{m_\pi^2}{m_N T} \right]^2$$

• \mathcal{I}_C : always in between \mathcal{I}_A and \mathcal{I}_B .

Yongchao Zhang (SEU)

Geometry of S in the stars

Caputo, Raffelt & Vitagliano '22; Balaji, Dev, Silk & YCZ '22

Important for decay & absorption of S