Near or Far Detectors? Optimizing Long-Lived Particle Searches at Electron-Positron Colliders

Ruth Schäfer

Heidelberg University

May 25th 2022 1st workshop of the WG1-SRCH group

Based on [2202.11714] with F. Tillinger and S. Westhoff RS supported by GRK 1940

Long-lived Particles

- Non-prompt decays
- Weakly coupled new physics
 - $\blacktriangleright c\tau \propto \frac{1}{\text{coupling}^2}$
- Complementary detector signatures:
 - Prompt decays
 - Displaced decays
 - Missing energy
 - Other signatures

Far detectors?

Many promising proposals, e.g.:

- FASER @ ATLAS (built!)
- CODEXb @ LHCb
- MATHUSLA @ CMS

So far "afterthoughts", but what about future detectors?

The International Linear Collider (ILC)

- ▶ e^+e^- -collider with $\sqrt{s} = 250 \,\text{GeV}$
- Linear collider 20+ km long
- Proposed to be built in Japan

Far detector for the ILC?

Where could we put one?

Far detector options for the ILC

Far detector options for the ILC

LLP sensitivity

How many LLPs fly through a detector?

How many decay in its volume?

$$N_{a} = N_{a@e^{+}e^{-}} \times \langle \mathbb{P} \rangle \times Br(a \to \ell \ell) \quad \times \epsilon$$
$$\langle \mathbb{P} \rangle = \frac{1}{N} \sum_{i} e^{-\frac{d_{in}^{i}}{\gamma \beta c \tau_{i}}} - e^{-\frac{d_{out}^{i}}{\gamma \beta c \tau_{i}}}$$

Benchmark model: ALPs

$$\blacktriangleright \mathcal{L}_{\text{eff}}(\mu > \mu_w) = \frac{c_{\ell\ell}}{2} \frac{\partial^{\mu}a}{f_a} \left(\bar{\ell}\gamma_{\mu}\gamma_5 \ell \right) + c_{WW} \frac{\alpha_2}{4\pi} \frac{a}{f_a} W^{\tau}_{\mu\nu} \widetilde{W}^{\mu\nu}_{\tau}$$

- $\blacktriangleright m_a \ll m_W$
- ▶ Production in $e^+e^- \rightarrow a\gamma$, $e^+e^- \rightarrow Z\gamma \rightarrow (a\gamma)\gamma$
- ▶ Decay to muons $a \rightarrow \mu \bar{\mu}$

Comparing ILC and Far Detectors

Comparing ILC and Far Detectors

Intuition for ILC vs Far Detectors

- > ILD has near full solid angle Ω
- \blacktriangleright Due to distance, realistic far detectors must have smaller Ω

Intuition for ILC vs Far Detectors

▶ ILD spans orders of magnitude in relative thickness $(d_{out} - d_{in})/d_{in}$ ▶ Due to distance, $(d_{out} - d_{in}) \ll d_{in}$ for realistic far detectors

ILC vs Far Detectors

- ▶ From geometric arguments, ILD better than realistic far detectors
- There are other factors:
 - Models with preferred LLP production directions
 - Backgrounds differ strongly between detectors

Comparing ILC to Belle II

▶ How does ILC compare to current e^+e^- ?

- Belle II @ SuperKEKB
 - ▶ Circular e^+e^- -accelerator with $\sqrt{s} = 10.58 \, \text{GeV}$
 - ▶ ALPs from *B* decays

Comparing ILC to Belle II

▶ Boost of ALP with $m_a = 0.3 \,\text{GeV}$

• Belle II: $\langle \gamma \beta \rangle \approx 5$ • ILD: $\langle \gamma \beta \rangle \approx 400$

Comparing ILC to Belle II

Conclusion

- Future e^+e^- -colliders have great potential to look for LLPs
- Far detectors give little additional sensitivity
- Far detectors still relevant, especially if
 - LLPs produced in preferred direction
 - Background reduction better than @ main detector

Backup slides

Comparing ILC and Far Detectors

Comparing ILC and Far Detectors

