Observing Axion Emission from Supernova with Collider Detectors

Based on

S. Asai (Tokyo U., ICEPP), YK, T. Moroi (Tokyo U.) and T. Sichanugrist (Tokyo U.),

arXiv:2203.01519 [hep-ph], Phys. Lett. B 829 (2022) 137137.

Yoshiki Kanazawa Tokyo U. D2

ECFA HF WG1: 1st Workshop of the WG1-SRCH group, 25 May, 2022

My previous work

Supernova-scope for the direct search of Supernova axions

Shao-Feng Ge,^{*a,b,c*} Koichi Hamaguchi,^{*d,e*} Koichi Ichimura,^{*f,e*} Koji Ishidoshiro,^{*f*} Yoshiki Kanazawa,^{*d*} Yasuhiro Kishimoto,^{*f,e*} Natsumi Nagata^{*d*} and Jiaming Zheng^{*a,b*}

JCAP 11 (2020) 059

JCAP]

Supernova axion search with helioscope

Introduction

Axions

<u>OCD Axion</u> solution to the strong CP problem

S. Weinberg, Phys. Rev. Lett. 40 (1978) 223;

F. Wilczek, Phys. Rev. Lett. 40 (1978) 279.

Axion-like particles (ALPs)

predicted in the string theories

P. Svrcek and E. Witten, JHEP 06 (2006) 051;

A. Arvanitaki, S. Dimopoulos and S. Dubovsky, Phys. Rev. D 81 (2010) 123530.

Axions are well-motivated candidates for the BSM.

But, they have not been found directly.

Constraints on axion models

Effective lagrangian at low energy

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} a)^2 + \frac{1}{2} m_a^2 a^2 + \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{aNN}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{aNN}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{N} \gamma^{\mu\nu} \gamma^5 N \partial_{\mu} a \begin{bmatrix} m_{\mu\nu} \\ g \end{bmatrix} g_{\mu\nu}^{\mu\nu} \widetilde{F}_{\mu\nu} + \sum_{N=p,n} \frac{g_{\mu\nu}}{2m_N} \overline{F}_{\mu\nu} + \sum_{N=p$$

 m_a axion mass $g_{a\gamma\gamma}$ axion-photon coupling g_{aNN} axion-nucleon coupling

Constraints

$$g_{a\gamma\gamma} \lesssim 6.6 \times 10^{-11} \text{ GeV}^{-1}$$
 for $m_a \lesssim 0.02 \text{ eV}$ from CAST experiment

CAST collaboration, Nature Phys. 13 (2017) 584.

 $\widetilde{g}_{aNN} \lesssim 6.4 \times 10^{-10}$ from SN 1987A

$$\widetilde{g}_{aNN}^2 \equiv g_{ann}^2 + 0.61g_{app}^2 + 0.53g_{ann}g_{app}$$

P. Carenza, T. Fischer et al., JCAP 10 (2019) 016.

Introduction

Supernova

<u>Supernova</u>

<u>Nearby SN candidates</u> $d_{\rm SN} \lesssim 400 \text{ pc}$

- Red- or blue-supergiant
- $M \gtrsim 10 M_{\odot}$

HIP	Common Name	Distance (pc)
65474	Spica / α Virginis	77(4) [28]
81377	$\zeta\mathrm{Ophiuchi}$	112(2) [28]
71860	lpha Lupi	143(3) [28]
80763	Antares / α Scorpii	169(30) [28]
107315	Enif / ϵ Pegasi	211(6) [28]
27989	Betelgeuse / α Orionis	222^{+48}_{-34} [29]
109492	ζ Cephei	256(6) [30]
24436	Rigel / β Orionis	264(24) [28]
31978	S Monocetotis $A(B)$	282(40) [28]
25945	CE Tauri / 119 Tauri	326(70) [30]

https://www-sk.icrr.u-tokyo.ac.jp/sk/sk/supernova.html

Introduction

Collider detectors

- Introduction
- Supernova axions
- Axion search with collider detectors
- Summary

Supernova axions

Axion production process

Two kinds of production process occur for $\Delta t_{\rm SN} \sim 10~{ m sec}$

- $N_1 + N_2 \rightarrow N_1 + N_2 + a$ bremsstrahlung $N_i \ (i = 1, 2)$ nucleon P. Carenza, T. Fischer et al., JCAP 10 (2019) 016. N_1
- $\pi^- + p \rightarrow n + a$

P. Carenza, B. Fore et al., Phys. Rev. Lett. 126 (2021) 071102.

 N_2

Supernova axions

Spectrum

- The peak energy of $\pi^- p$ -process axions is roughly three times larger than *NN*-process ones.
- The spectrum is proportional to \tilde{g}_{aNN}^2 . $\tilde{g}_{aNN}^2 \equiv g_{ann}^2 + 0.61g_{app}^2 + 0.53g_{ann}g_{app}$

Pre-SN neutrino alert

Axion search with collider detectors

Collider detectors

<u>List of detectors</u>

	R	Z	В	$\overline{L}(\theta = \frac{\pi}{6})$	$\overline{L}(\theta = \frac{\pi}{3})$	$\bar{L}(\theta = \frac{\pi}{2})$
ATLAS (LHC) [41]	1.1 m	$6.7 \mathrm{m}$	$2.0 \mathrm{T}$	$1.2 \mathrm{m}$	1.4 m	1.8 m
CMS (LHC) [42]	1.3 m	$5.8 \mathrm{m}$	$3.8 \mathrm{T}$	$1.3 \mathrm{m}$	1.9 m	$2.1 \mathrm{m}$
ILD (ILC) $[43]$	1.8 m	$4.9 \mathrm{m}$	$3.5 \mathrm{T}$	1.6 m	$2.6 \mathrm{m}$	$2.9 \mathrm{m}$
SiD (ILC) [43]	1.2 m	$3.3 \mathrm{m}$	$5.0 \mathrm{T}$	1.1 m	1.7 m	2.0 m

Inner tracker region

Collider detectors

<u>List of detectors</u>

	R	Z	В	$\bar{L}(\theta = \frac{\pi}{6})$	$\bar{L}(\theta = \frac{\pi}{3})$	$\bar{L}(\theta = \frac{\pi}{2})$
ATLAS (LHC) [41]	1.1 m	$6.7 \mathrm{m}$	$2.0 \mathrm{T}$	$1.2 \mathrm{m}$	1.4 m	1.8 m
CMS (LHC) [42]	1.3 m	$5.8 \mathrm{m}$	$3.8 \mathrm{T}$	$1.3 \mathrm{m}$	$1.9 \mathrm{m}$	$2.1 \mathrm{m}$
ILD (ILC) $[43]$	1.8 m	$4.9 \mathrm{m}$	$3.5 \mathrm{T}$	1.6 m	$2.6 \mathrm{m}$	$2.9 \mathrm{m}$
SiD (ILC) [43]	1.2 m	$3.3 \mathrm{m}$	$5.0 \mathrm{T}$	1.1 m	1.7 m	2.0 m

Inner tracker region

Conversion rate

Signal and background

• SN neutrinos interact with materials in ECAL absorber.

 $\nu_e + W \rightarrow e^- + X^*$ (ILD)

Signal and background

• SN neutrinos interact with materials in ECAL absorber.

$$\nu_e + W \rightarrow e^- + X^*$$
 (ILD)

Signal and background

• We impose an energy cut-off to remove most of background events.

 $E_{\rm cut} = 145 \text{ MeV}$ $N_{\rm BG} \sim 10^{5}$ $\rightarrow N_{\rm BG} \simeq 1, N_{\rm signal} \simeq 25$ 10¹ ILD setup, $d_{\rm SN} = 77$ pc (Spica), NN $\kappa_{\rm SN} = 3$, $g_{a\gamma\gamma} = 6.6 \times 10^{-11} \text{ GeV}^{-1}$, πN $dN/dE \ ({
m MeV}^{-1})$ 10⁻¹) 10⁻² 100 Signal $\tilde{g}_{aNN} = 6.4 \times 10^{-10}$, $\Delta t_{SN} = 10$ sec. BG Mainly $\pi^- p$ -process smeared 10-3 non-smeared 100 200 300 400 500 0 E (MeV)

Accessible parameter region

- If a SN occurs within $\mathcal{O}(100)$ pc, we may search unknown region.
- The accessible region can be also searched by IAXO, which is a future solar axion experiment.

Summary

- We have discussed a possibility of SN axion search with collider detectors.
- Practically, we switch to axion search with the help of pre-SN neutrino alert.
- If a nearby SN occurs, we may search non-excluded parameter region.

Supernova + Collider detector

→ New direction to axion search!

Production and detection

QCD axion

Axion-photon coupling

$$g_{a\gamma\gamma} = \frac{1}{f_a} C_{a\gamma\gamma} \qquad C_{a\gamma\gamma} \simeq \frac{\alpha}{2\pi} \left(\frac{E}{N} - 1.92\right)$$

Axion-nucleon coupling

$$g_{aNN} = \frac{m_N}{f_a} C_{aNN} \quad (N = p, n)$$

$$C_{app}^{(\text{KSVZ})} \simeq -0.47 \qquad C_{app}^{(\text{DFSZ})} \simeq -0.617 + 0.435 \sin^2 \beta$$
$$C_{ann}^{(\text{KSVZ})} \simeq -0.02 \qquad C_{ann}^{(\text{DFSZ})} \simeq 0.254 - 0.414 \sin^2 \beta$$

Axion mass
$$m_a \simeq 5.70 \text{ meV} \times \left(\frac{f_a}{10^9 \text{ GeV}}\right)^{-1}$$

G. Grilli Di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, JHEP **01** (2016) 034.

Constraint on axion-photon coupling

The most stringent bound

 $g_{a\gamma\gamma} \lesssim 0.66 \times 10^{-10} \text{ GeV}^{-1} \text{ for } m_a \lesssim 0.02 \text{ eV}$

CAST collaboration, Nature Phys. 13 (2017) 584.

Constraint on axion-nucleon coupling

P. Carenza, T. Fischer et al., JCAP 10 (2019) 016.

$$\rightarrow \qquad L_a \lesssim L_\nu \simeq 2 \times 10^{52} \text{ erg/sec} \qquad L_a = L_a^{(NN)} + L_a^{(\pi^- p)} \quad \text{(Assuming } L_a^{(NN)} = L_a^{(\pi^- p)} \text{)}$$

Using
$$L_a^{(NN)} = 2.42 \times 10^{70} \text{ erg/sec} \times \tilde{g}_{aNN}^2$$

$$\rightarrow \qquad \widetilde{g}_{aNN} \lesssim 6.4 \times 10^{-10}$$

Pre-SN neutrino alert

1. Pre-SN neutrinos are emitted $\mathcal{O}(1)$ hour before axion emission.

- 2. Pre-SN neutrinos are detected by neutrino detectors, e.g.) JUNO, SK, KamLAND.
- 3. SN candidates within $\mathcal{O}(100)$ pc may be identified $\mathcal{O}(1)$ hour before axions come. C. Kato, K. Ishidoshiro and T. Yoshida, Ann. Rev. Nucl. Part. Sci. 70 (2020) 121.
- 4. Stop the beam, and switch to SN axion search.

Alarm time for SN

J •	Detector	Model	$N_s^{\rm DC}(t=0.01)$	Detection range [pc]	Alarm time [hr]	$t_w [{ m hr}]$
			46.7-49.9 (10.9-11.7)	380-480 (180-230)	0.1-0.6 (-0.02)	10
			50.8-54.3 (12.2-13.0)	350-460 (170-220)	0.2 - 4.5 (-0.02)	$\frac{12}{24}$
		Kato	54.3-58.0 (13.3-14.3)	320-430 (160-210)	0.2–10 (–0.01)	48
			21.4-22.8 (12.4-13.2)	260-330 (190-250)	0.1–1 (–0.1)	12
			26.3-28.0 (15.0-16.0)	260-340 (190-260)	0.4-6 (-0.2)	$\frac{12}{24}$
		Yoshida	28.4 - 30.2 (16.1 - 17.2)	240-320 (180-240)	0.2 - 6.5 (-0.2)	48
	SK-Gd		45.3-48.3 (12.8-13.7)	380-490 (200-260)	4-6.5 (0.02-1.7)	12
			47.3–50.4 (13.4–14.3)	340-460 (180-240)	3-6.5(-1.6)	$\frac{12}{24}$
		Odrzywolek	49.1-52.4 (14.0-14.9)	310-420 (170-220)	3-7(-0.7)	48
			43.5 - 46.3 (12.9 - 13.9)	370-480 (200-260)	3.5-6 (0.02-0.9)	12
			45.8–48.9 (13.8–14.7)	340-450 (180-250)	3-6.5 (-0.5)	24
		Patton	46.8-49.8 (14.1-15.0)	310-410 (170-220)	2.5 - 5.5 (-0.1)	48
			7.6(1.6)	340-410 (150-190)	0.2-1 (NA)	10
			9.3(2.1)	350-440 (170-210)	5.5-20 (-0.02)	24
		Kato	10.9 (2.6)	360-460 (180-220)	17-26 (-0.1)	48
			4.5 (2.4)	260-310 (190-230)	0.5-16(-0.1)	10
			6.5(3.5)	290-370 (210-270)	8–18 (0.1–1.8)	24
		Yoshida	7.7(4.1)	310-390 (220-280)	15-22 (0.3-7.5)	48
	KamLAND		9.7(2.8)	380-460 (200-240)	5.5-8 (0.04-1.7)	19
			11.0(3.1)	380 - 480 (200 - 250)	7 - 13 (0.08 - 2)	$\frac{12}{24}$
		Odrzywolek	12.4 (3.5)	390-490 (200-260)	11 - 38 (0.1 - 2.5)	48
			10.1 (2.9)	390-470 (200-250)	5.5 - 8.5 (0.07 - 1.9)	12
			11.4(3.5)	390-490 (210-260)	7–11 $(0.1–2.5)$	$\frac{12}{24}$
		Patton	12.2 (3.6)	380-490 (210-260)	7.5–13 $(0.1–3)$	48
			232 (48.7)	950 (430)	54(24)	10
			286~(65.2)	950 (440)	64 (28)	24
		Kato	341 (81.8)	960 (470)	62(34)	48
			142 (75.7)	740 (540)	52 (30)	19
			205~(109)	810 (590)	64(38)	$\frac{12}{24}$
		Yoshida	247 (131)	810 (590)	62(46)	48
	JUNO		303 (86.2)	1090 (580)	78 (14)	12
			344 (97.8)	1050 (560)	76(28)	$\frac{12}{24}$
		Odrzywolek	391 (111)	1030(540)	74(48)	48
			315 (90.6)	1110 (590)	30 (17)	12
			360 (106)	1070 (580)	34 (19)	$\frac{12}{24}$
		Patton	385(115)	1020 (550)	38 (20)	48

Table 2	Detection ranges and alarm time	es for n	normal	(inverted)	mass	ordering,	where a	false	alarm	rate
is 1 yr^{-1}	for four pre-SN neutrino models	with 1	15 M_{\odot} .							

At the latest $\mathcal{O}(1)$ hr

C. Kato, K. Ishidoshiro and T. Yoshida,

Ann. Rev. Nucl. Part. Sci. 70 (2020) 121.

Our SN model

We use the following SN model by obtaining the spectrum of the NN-process axion.

- Uniform SN
- Proton fraction per baryons $Y_p = 0.3$
- Density $\rho = 1.3 \times 10^{14} \text{ g/cm}^3$
- Temperature T = 35 MeV
- KSVZ axion model

Time dependence of the luminosity

We define the time average luminosity, using a parameter, κ_{SN} .

$$\overline{L}_{a}^{(NN)} = \kappa_{\rm SN} L_{a}^{(NN)}(t_{\rm pb} = 1 \text{ s}) = 2.42 \times 10^{70} \text{ erg/sec} \times \widetilde{g}_{aNN}^2 \kappa_{\rm SN} \qquad \kappa_{\rm SN} \sim \mathcal{O}(1)$$

Spectrum of $\pi^- p$ **-process axion**

P. Carenza, B. Fore et al., Phys. Rev. Lett. 126 (2021) 071102.

Luminosity

• The luminosity of $\pi^- p$ -process axion is a few times larger.

··· 1				NN process	$\pi^{-}p$ proces	s		
t _{pb}	ρ	Т	Y_{π}	Q_a^{NN}	Q^{π}_{a}	Q_{a}^{tot}	$^{t}/Q_{a}^{NN}$	L_a
(s)	$(10^{14} \text{ g/cm}^{-3})$	(MeV)		$(10^{32} \text{ erg cm}^{-3} \text{ s}^{-1})$	$(10^{32} \text{ erg cm}^{-3} \text{ s}^{-1})$			$(10^{51} \text{ erg s}^{-1})$
1	1.45	37.07	0.011	1.37	4.63		4.38	4.0
2	2.08	38.93	0.016	3.28	8.87		3.70	8.10
4	3.10	40.56	0.027	9.08	15.87		2.75	16.63
6	3.65	39.91	0.034	12.92	14.99		2.16	18.61

P. Carenza, B. Fore et al., Phys. Rev. Lett. 126 (2021) 071102.

Conversion rate

G. Raffelt and L. Stodolsky, Phys. Rev. D 37 (1988) 1237.

Radiation length (LHC)

• ~ $1X_0 \rightarrow$ It is difficult to regard a photon as a free particle.

 X_0 : radiation length

CMS Tracker collaboration,

"The Upgrade of the CMS Tracker at HL-LHC",

Radiation length (ILC)

• ~ $0.1X_0 \rightarrow$ Photon is almost regarded as a free particle.

 X_0 : radiation length

H. Abramowicz et al., 1306.6329.

The number of signal events

Neutrino background events

<u>The number of targets</u> $N_{\text{target}} \sim 4 \times 10^{29}$ for ILD (tungsten) H. Abramowicz et al., 1306.6329.

$$\rightarrow N_{\rm BG} \sim 10^5$$
 $\Delta t_{\rm SN} \simeq 10$ sec, $d_{\rm SN} \sim 100$ pc

ſ

The energy cut-off and signal events

• The number of signal events with $E_{\rm cut} = 150 \text{ MeV}$ is roughly one-third of the one without the energy cut-off.

Energy resolution

- Practically, the energy resolution is finite.
- We regard quantities smeared by the Gaussian function as observables.

$$f^{(\text{obs})}(E) = \int dE' \frac{1}{\sqrt{2\pi\delta E}} \exp\left(-\frac{(E'-E)^2}{2\delta E^2}\right) f^{(\text{ori})}(E')$$

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E_{\text{GeV}}}} \qquad a = 15\% \text{ for ILD (W)}$$

$$H. \text{ Abramowicz et al., 1306.6329.}$$

$$a = 17\% \text{ for SiD (W)}$$

$$E_{\text{GeV}} \equiv \frac{E}{1 \text{ GeV}} \qquad a = 3\% \text{ for CMS (PbWO4)}$$

CMS collaboration, JINST 8 (2013) P09009.

Energy resolution and signal events

