Collective Effects in Supernova Neutrinos

Pedro Dedin Neto, Ernesto Kemp

Institute of Physics "Gleb Wataghin" University of Campinas, Brazil

27th International Symposium on Particles, Strings and Cosmology

July 26, 2022

Contact: dedin@ifi.unicamp.br

Quick Introduction

Supernova Neutrinos

- A core-collapse supernova happens (CCSN) is a star explosion that happens when a massive star ($M \gtrsim 8 M_{\odot}$) ends its nuclear fuel, collapsing into itself.
- In this process, a large number of neutrinos are emitted ($\sim 10^{53}$ erg) in a time window of about 10 seconds.

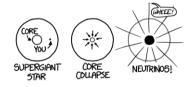


Figure: From https://what-if.xkcd.com/73/

• For supernovae happening in our galaxy and its neighborhood (\sim some per century), their neutrinos can be detected at the Earth, and these neutrinos could bring unique information about the neutrino physics and the supernova mechanism.

Forward Scattering Potentials

Neutrino-Electron (MSW)

$$H_{\nu e} = \sqrt{2}G_F n_e$$

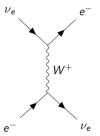


Figure: Forward scattering in electrons.

• Neutrino-Neutrino (Collective Effects) ¹ $H_{\nu\nu,i} = \sqrt{2} G_F \sum_i (1 - \cos \theta_{ij}) (n_{\nu,j} \rho_{\nu,j} - n_{\overline{\nu},j} \rho_{\overline{\nu},j})$

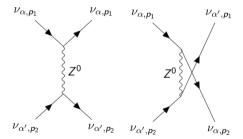


Figure: Forward scattering in neutrinos.

¹G. Sigl and G. Raffelt, "General kinetic description of relativistic mixed neutrinos", Nucl. Phys. B 406, 423–451 (1993), P. D. Neto and E. Kemp,

[&]quot;Neutrino-(anti)neutrino forward scattering potential for massive neutrinos at low energies", Mod. Phys. Lett. A 37, 2250048 (2022)

Evolution Equation

 Considering the forward scattering potentials, the evolution equation for the i-th neutrino in the system becomes

$$i\frac{d}{dt}\rho_{i} = \left[\omega H_{vac} + \lambda H_{\nu e} + \mu H_{\nu \nu,i}, \rho_{i}\right], \qquad \rho_{i} \equiv \left|\psi_{\nu,i}(t)\right\rangle \left\langle\psi_{\nu,i}(t)\right|$$

$$\omega \equiv \frac{\Delta m^{2}}{2E_{i}}, \qquad \lambda \equiv \sqrt{2}G_{F}n_{e}, \qquad \mu \equiv \sqrt{2}G_{F}n_{\nu} \tag{1}$$

- Although it may appear simple at first glance, there is no definitive solution to this
 problem in a supernova environment.
- The main complications are:
 - 1. The nonlinear evolution, due to the $\nu \nu$ interactions;
 - 2. The angular momenta distribution dependency in the term $\cos \theta_{ij} = \hat{p}_i \cdot \hat{p}_j$;
 - 3. The complicated geometry of a supernova.

Our Approach to the Problem

Our Approach to the Problem

- In our contribution to understand and solve this problem, we decided to take a **numerical approach**, always trying to compare it with analytical solutions of simpler systems.
- The idea is to **start with a simple model** and increasing its complexity.
- Finally, all the code being developed is made public so that everyone in the community can reproduce the results and maybe help to solve this problem.
- Here, we will present the results of our first models, which consists of an isotropic neutrino gas and the Bulb model with a Single-Angle approximation.

Polarization Vectors Formalism

• If we consider 2 families of neutrinos $\{\nu_e, \nu_x\}$, all the complex matrices in the evolution equation can be decomposed into the Pauli Matrices, such that the coefficients of expansions will work as components of a vector.

$$H_V = -\frac{1}{2}\vec{\sigma} \cdot \vec{B}, \quad H_{\nu e} = -\frac{1}{2}\vec{\sigma} \cdot \vec{L}, \quad \rho = \frac{1}{2}\mathbf{1} + \frac{1}{2}\vec{\sigma} \cdot \vec{P}, \quad \vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$$
 (2)

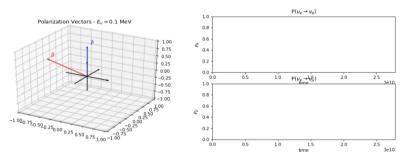
$$\frac{d}{dt}\vec{P}_{\nu_i} = \vec{P}_{\nu_i} \times \left[\omega\vec{B} + \lambda\vec{L} + \mu\sum_j (1 - \cos\theta_{ij})(\vec{P}_{\nu,j} - \vec{P}_{\overline{\nu},j})\right]$$
(3)

• Here, the polarization vector \vec{P} has information about the neutrino state, with its third component given the flavor content (ν_e or ν_x) in the flavor basis (P_3^F).

$$P_{\beta}(t) = \begin{cases} P_{e}(t) = \frac{1}{2} \left[1 + P_{3}^{F}(t) \right] \\ P_{x}(t) = \frac{1}{2} \left[1 - P_{3}^{F}(t) \right] \end{cases} \tag{4}$$

Example - Vacuum Oscillations $(\lambda=0,\mu=0)$

$$\frac{d}{dt}\vec{P}_{\nu_i} = \vec{P}_{\nu_i} \times \omega \vec{B} \tag{5}$$



Vacuum oscillation of a neutrino created as $|
u(0)
angle = |
u_e
angle$

Isotropic and Mono-energetic Neutrino Gas

Isotropic and Mono-energetic Neutrino Gas

- As a first approach in trying to solve neutrino evolution in a high-density neutrino environment, we consider a **mono-energetic and isotropic** ($\langle \cos \theta_{ij} \rangle = 0$) neutrino gas composed of electron neutrinos and antineutrinos $\{\nu_e, \overline{\nu}_e\}$.
- ullet For simplicity, let us consider no matter potential $(\lambda=0)$, so that

$$\frac{d}{dt}\vec{P}_{\nu_i} = \vec{P}_{\nu_i} \times \left[\omega\vec{B} + +\mu(\vec{P}_{\nu} - \vec{P}_{\overline{\nu}})\right] \tag{6}$$

$$\frac{d}{dt}\vec{P}_{\overline{\nu}_i} = \vec{P}_{\overline{\nu}_i} \times \left[-\omega \vec{B} + \mu (\vec{P}_{\nu} - \vec{P}_{\overline{\nu}}) \right] \tag{7}$$

- Here, $\vec{P}_{\nu} \equiv \sum_{i} \vec{P}_{\nu_{i}}$ and $\vec{P}_{\overline{\nu}} \equiv \sum_{i} \vec{P}_{\overline{\nu}_{i}}$ represent the entire ensemble of neutrinos and antineutrinos, respectively.
- Here, we consider $\Delta m_{31}^2=2.5\times 10^{-3} eV^2$ and $\sin^2\theta_{13}=2.1\times 10^{-2}$ as our vacuum mixing parameters.

The Pendulum Analogy

- It remarkable that the equations for this system is **equivalent to a pendulum**.
- To see this, let us define the vectors $\vec{D} = \vec{P}_{\nu} \vec{P}_{\overline{\nu}}$ (difference), $\vec{S} = \vec{P}_{\nu} + \vec{P}_{\overline{\nu}}$ (sum) and $\vec{Q} = \vec{S} \frac{\omega}{\mu}\vec{B}$, so that $\vec{Q} \approx \vec{S}$ for $\mu \gg \omega$ and we can rewrite the equations as²:

Neutrino Equations

Pendulum Equations

$$\dot{ec{Q}} = \mu ec{D} imes ec{Q}$$

$$I\dot{\vec{r}} = \vec{L} \times \vec{r}$$
 (9a)

$$\dot{\vec{D}} = \omega \vec{Q} \times \vec{B}$$

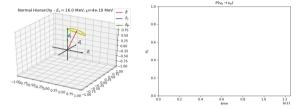
$$\vec{L} = \vec{\tau} = \vec{r} \times \vec{F} \tag{9b}$$

• The neutrino system works as a pendulum attracted by a force field $\vec{F} = \omega \vec{B}$, with angular momentum $\vec{L} = \vec{D}$, length $\vec{r} = \vec{Q}$, and moment of inertia $I = m|\vec{r}|^2 = \mu^{-1}$

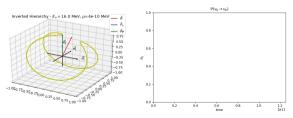
²S. Hannestad et al., "Self-induced conversion in dense neutrino gases: Pendulum in flavour space", Phys. Rev. D 74, [Erratum: Phys.Rev.D 76, 029901 (2007)], 105010 (2006).

1^{st} Scenario - Symmetric and Constant μ - Numerical Results

• Normal Hierarchy ($\Delta m^2 > 0$): The system is attracted by $\vec{F} = |\omega|\vec{B}$

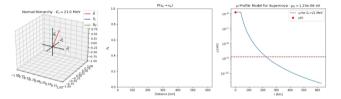


• Inverted Hierarchy ($\Delta m^2 < 0$): The system is attracted by $\vec{F} = -|\omega|\vec{B}$

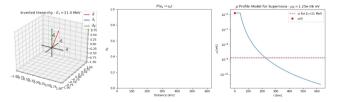


$2^{\rm nd}$ Scenario - Symmetric and Decreasing μ - Numerical Results

• Normal Hierarchy: As $I = \mu^{-1}$ increases, the oscillation is damped towards $\vec{F} = |\omega| \vec{B}$.

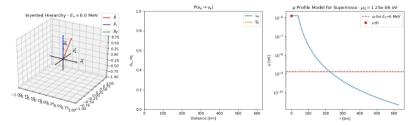


• Inverted Hierarchy: As $I=\mu^{-1}$ increase, the oscillation is damped towards $\vec{F}=-|\omega|\vec{B}$



$\mathsf{3}^\mathsf{rd}$ Scenario - Asymmetric and Decreasing μ - Numerical Results

- From the equations of motion, $\vec{D} \cdot \vec{B}$ is conserved, which means that **the initial difference of eigenstates is conserved**. If the mixing angle is small $\theta << 1$, which is the case for the supernova environment due to the high density of matter, this is equivalent to **conservation of net lepton number**.³
- Inverted Hierarchy: Asymmetry of $N_{\overline{\nu}_e}/N_{\nu_e}=0.8$.



³A. Mirizzi et al., "Supernova Neutrinos: Production, Oscillations and Detection", Riv. Nuovo Cim. 39, 1–112 (2016).

Isotropic Neutrino Gas with Spectral

Distribution

Isotropic Neutrino Gas with Spectral Distribution

• With a spectral distribution, we can define the polarization vector \vec{P}_{ν,\vec{p}_1} for each momentum (or momentum interval). Defining $\vec{D} = \sum_{\vec{p}_2} \vec{D}_{\vec{p}_2} = \sum_{\vec{p}_2} (\vec{P}_{\nu,\vec{p}_2} - \vec{P}_{\overline{\nu},\vec{p}_2})$ we may write⁴:

$$\vec{P}_{\nu,\vec{p}_{1}} = \vec{P}_{\nu,\vec{p}_{1}} \times \left[\omega_{\vec{p}_{1}}\vec{B} + \mu\vec{D}\right]$$
(10a)
$$\dot{\vec{S}}_{\vec{p}_{1}} = \omega\vec{D}_{\vec{p}_{1}} \times \vec{B} + \mu\vec{D} \times \vec{S}_{\vec{p}_{1}}$$
(11a)
$$\dot{\vec{P}}_{\nu,\vec{p}_{1}} = \vec{P}_{\nu,\vec{p}_{1}} \times \left[-\omega_{\vec{p}_{1}}\vec{B} + \mu\vec{D}\right]$$
(10b)
$$\dot{\vec{D}}_{\vec{p}_{1}} = \omega\vec{S}_{\vec{p}_{1}} \times \vec{B}$$
(11b)

• If $\mu \gg \omega_{\vec{p}_1}$ for all modes, all $\vec{S}_{\vec{p}_1}$ evolve in a similar way, resulting in an evolution similar to the mono-energetic case for each mode.

⁴S. Hannestad et al., "Self-induced conversion in dense neutrino gases: Pendulum in flavour space", Phys. Rev. D 74, [Erratum: Phys.Rev.D 76, 029901 (2007)], 105010 (2006).

Isotropic Neutrino Gas with Spectral Distribution - Spectral Split

• When considering a decreasing μ , as in a supernova, due to the **net lepton number conservation**, only a fraction of the spectrum can convert its flavor, as given by the following equation:

$$\int_{E_{split}}^{\infty} dE \left[\phi_{\nu_e}(E) - \phi_{\nu_x}(E) \right] = \int_0^{\infty} dE \left[\phi_{\overline{\nu}_e}(E) - \phi_{\overline{\nu}_x}(E) \right], \tag{12}$$

• This leads to the phenomenon of **spectral split**, in which there is conversion above certain energy E_{split} , but not bellow it.

Isotropic Neutrino Gas with Spectral Distribution - Numerical Results

• Considering a supernova spectrum, we had the following results:

Normal Hierarchy

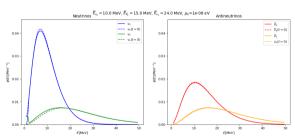


Figure: Initial and final spectrum for the isotropic neutrino gas (NH).

Inverted Hierarchy

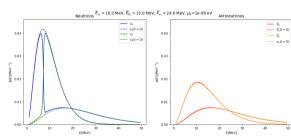


Figure: Initial and final spectrum for the isotropic neutrino gas (IH).

Bulb Model Single Angle Approximation

Bulb Model

• The Bulb model consists of considering that the neutrinos of a supernova are emitted from the surface of a sphere, as light from a bulb.

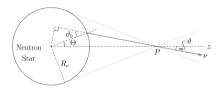


Figure: Bulb model of emission.⁵

• In this case, there is an **azimuthal symmetry** around the z axis, so that the neutrino-neutrino potential can be integrated in this angle.

$$H_{\nu\nu} = \sqrt{2}G_F 2\pi \sum_{\alpha} \int (1 - \cos\theta \cos\theta') [\rho_{\alpha}(p', \theta) - \overline{\rho}_{\alpha}(p', \theta)] dp' d\cos\theta'$$
 (13)

⁵H. Duan et al., "Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories", Phys. Rev. D 74, 105014 (2006)

Bulb Model - Single-Angle Approximation

• A further approximation can be made by considering that a single angle ϑ is a good representative of all the other possible trajectories.

$$H_{\nu\nu} = \sqrt{2}G_F 2\pi D(r) \sum_{\alpha} \int [\rho_{\alpha}(p') - \overline{\rho}_{\alpha}(p')] dp'$$
 (14)

• In this case, the potential is identical to the isotropic case, with the following geometric factor for $\vartheta=0$:

$$D(r) = \frac{1}{2} \left(1 - \cos \vartheta_{\text{max}} \right)^2 = \frac{1}{2} \left[1 - \sqrt{1 - \left(\frac{R_{\nu}}{r} \right)^2} \right]^2$$
 (15)

Bulb Model - Single-Angle Approximation - Numerical Results

 As expected, we have the same results of the isotropic scenario, with the phenomenon of spectral split.

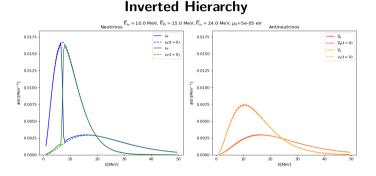


Figure: Initial and final spectrum for the Bulb model with the Single-Angle approximation (IH).

Source Code

Open-Source Code

- When working with neutrino collective effects, it is difficult (almost impossible) to find papers with open-source code to verify and reproduce the results.
- With that in mind, our code was made available and can be found in the following repository⁶: https://github.com/pedrodedin/Neutrino-Collective-Effects.git

• We hope that this may help newcomers to understand and reproduce our results without the need to "reinvent the well".

⁶We have a paper under constriction in which we describe the physics and the code implementation.

• The neutrino flavor evolution is still an open problem in a supernova environment due to neutrino collective effects.

- The neutrino flavor evolution is still an open problem in a supernova environment due to neutrino collective effects.
- However, solutions can be found for simpler systems, such as the **isotropic gas** and the **Bulb model**, from where the **spectral split** phenomenon can emerge.

- The neutrino flavor evolution is still an open problem in a supernova environment due to neutrino collective effects.
- However, solutions can be found for simpler systems, such as the isotropic gas and the Bulb model, from where the spectral split phenomenon can emerge.
- Still, the systems presented here are not good representatives of a real supernova environment, and some papers have shown that new phenomena (such as fast oscillations) may emerge when considering more realistic conditions.

- The neutrino flavor evolution is still an open problem in a supernova environment due to neutrino collective effects.
- However, solutions can be found for simpler systems, such as the isotropic gas and the Bulb model, from where the spectral split phenomenon can emerge.
- Still, the systems presented here are not good representatives of a real supernova environment, and some papers have shown that new phenomena (such as fast oscillations) may emerge when considering more realistic conditions.
- In this context, we intend to improve our numerical code to consider more supernova-like systems, while trying to find analytical solutions or interpretations in the formalism of polarization vectors.

- The neutrino flavor evolution is still an open problem in a supernova environment due to neutrino collective effects.
- However, solutions can be found for simpler systems, such as the isotropic gas and the Bulb model, from where the spectral split phenomenon can emerge.
- Still, the systems presented here are not good representatives of a real supernova environment, and some papers have shown that new phenomena (such as fast oscillations) may emerge when considering more realistic conditions.
- In this context, we intend to improve our numerical code to consider more supernova-like systems, while trying to find analytical solutions or interpretations in the formalism of polarization vectors.
- Among these improvements, we may cite:
 - Multi-anlge and non-uniform emission in the Bulb model.
 - Models with electron lepton number crossing in the angular distribution, which can lead to the phenomena of fast oscillations.

Thank you!

This work was supported by FAPESP (grant no. 2019/08956-2)

References I

- ¹G. Sigl and G. Raffelt, "General kinetic description of relativistic mixed neutrinos", Nucl. Phys. B **406**, 423–451 (1993).
- ²P. D. Neto and E. Kemp, "Neutrino–(anti)neutrino forward scattering potential for massive neutrinos at low energies", Mod. Phys. Lett. A **37**, 2250048 (2022).
- ³S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Wong, "Self-induced conversion in dense neutrino gases: Pendulum in flavour space", Phys. Rev. D **74**, [Erratum: Phys.Rev.D **76**, 029901 (2007)], 105010 (2006).
- ⁴A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, and S. Chakraborty, "Supernova Neutrinos: Production, Oscillations and Detection", Riv. Nuovo Cim. **39**, 1–112 (2016).
- ⁵H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, "Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories", Phys. Rev. D **74**, 105014 (2006).