Flavour anomalies, Light Dark Matter and rare B decays with missing energy in $L_{\mu}-L_{\tau}$ model

Rukmani Mohanta

University of Hyderabad, Hyderabad-500046, India

$$
\text { July 25, } 2022
$$

(Based on: PRD 105, 015033 (2022), with S Singirala and S Sahoo)

Outline of the Talk

(1) $L_{\mu}-L_{\tau}$ model with Scalar Leptoquark
(2) Symmetry breaking and mass spectra
(3) Dark Matter Phenomenology
(9) Constraints from Flavour Sector
(6) Implications on Rare B decays with E
(0) Conclusion

Motivation

- There are a few open issues, which can not be addressed in the SM, e.g. Existence of Dark Matter, Non-zero neutrino masses \& mixing, Observed Baryon Asymmetry of the Universe, etc
- SM must be extended. What is the underlying fundamental theory?
- No direct evidence of NP either in Energy frontier or Intensity frontier
- In last few years several anomalies are reported in in $b \rightarrow s \ell \ell$ FCNC transitions, which might possibly suggest the presence of NP
- Interesting one: Lepton Non-Universality Observable Sizable discrepancies $(\geq 2 \sigma)$ reported by the LHCb and Belle Collaborations in the ratio $R_{K^{(*)}}$

$$
R_{K^{(*)}}=\frac{\operatorname{Br}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\operatorname{Br}\left(B \rightarrow K^{(*)} e e\right)}
$$

LNU observable	SM prediction	Expt. value	Deviation
$\left.R_{K}\right\|_{q^{2} \in[1.0,6.0]}$	1.0003 ± 0.0001	$0.846_{-0.041}^{+0.044}(\mathrm{LHCb})$	3.1σ
$\left.R_{K^{*}}\right\|_{q^{2} \in[0.045,1.1]}$	0.92 ± 0.02	$0.660_{-0.070}^{+0.110} \pm 0.024(\mathrm{LHCb})$	2.2σ
$\left.R_{K^{*}}\right\|_{q^{2} \in[1.1,6.0]}$	1.00 ± 0.01	$0.685_{-0.007}^{+0.113} \pm 0.047(\mathrm{LHCb})$	2.4σ

R. Aaij et al. [LHCb Collab], 2103.11769, JHEP 08, 055 (2017)

Model description (Gauged $L_{\mu}-L_{\tau}$)

- The SM has accidental $U(1)$ global symmetries like B and L no. conservation
- However, they become anomalous if promoted into a local one
- The anomaly free situation can be obtained if instead of considering B and L separately, some combinations between them, e.g., $B-L, L_{e}-L_{\mu}$, $L_{e}-L_{\tau}$ or $L_{\mu}-L_{\tau}$
- For the anomaly cancellation of local $B-L$ models, one requires 3 RHNs with appropriate $B-L$ charges
- Unlike $B-L$ case, the anomaly cancellation does not require any extra chiral fermionic degrees of freedom for $L_{\alpha}-L_{\beta}$, as anomalies cancel between different leptonic generations.
- $U(1))_{L_{\mu}-L_{\tau}}$ is less constrained, as the extra Z^{\prime} does not couple to electrons and quarks, \Rightarrow free from any constraints from lepton and hadron colliders
- Another theoretical motivation: it can explain the muon $(g-2)$ anomaly

Particle Content of $L_{\mu}-L_{\tau}$ model

	Field	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	$U(1)_{L_{\mu}-L_{\tau}}$	Z_{2}
Fermions	$Q_{L} \equiv(u, d)_{L}^{T}$	$(\mathbf{3}, \mathbf{2}, 1 / 6)$	0	+
	u_{R}	$(\mathbf{3}, \mathbf{1}, 2 / 3)$	0	+
	d_{R}	$(\mathbf{3}, \mathbf{1},-1 / 3)$	0	+
	$\ell_{L} \equiv e_{L}, \mu_{L}, \tau_{L}$	$(\mathbf{1}, \mathbf{2},-1 / 2)$	$0,1,-1$	+
	$\ell_{R} \equiv e_{R}, \mu_{R}, \tau_{R}$	$(\mathbf{1}, \mathbf{1},-1)$	$0,1,-1$	+
	N_{e}, N_{μ}, N_{τ}	$(\mathbf{1}, \mathbf{1}, 0)$	$0,1,-1$	-
Scalars	H	$(\mathbf{1}, \mathbf{2}, 1 / 2)$	0	+
	η	$(\mathbf{1}, \mathbf{2}, 1 / 2)$	0	-
	η	$(\mathbf{1}, \mathbf{1}, 0)$	2	+
	ϕ_{2}	$(\mathbf{3}, \mathbf{1}, 1 / 3)$	-1	-
Gauge bosons	$W_{\mu}^{I}(i=1,2,3)$	$(\mathbf{1}, \mathbf{3}, 0)$	0	+
	B_{μ}	$(\mathbf{1}, \mathbf{1}, 0)$	0	+
	V_{μ}	$(\mathbf{1}, \mathbf{1}, 0)$	0	+

Table: Fields and their charges of the proposed $U(1)_{L_{\mu}-L_{\tau}}$ model.

Lagrangian of the Model

The Lagrangian of the present model can be written as

$$
\begin{aligned}
\mathcal{L}_{G}= & -\frac{1}{4}\left(\hat{\mathbf{W}}_{\mu \nu} \hat{\mathbf{W}}^{\mu \nu}+\hat{B}_{\mu \nu} \hat{B}^{\mu \nu}+\hat{V}_{\mu \nu} \hat{V}^{\mu \nu}+2 \sin \chi \hat{B}_{\mu \nu} \hat{V}^{\mu \nu}\right), \\
\mathcal{L}_{f}= & -\frac{1}{2} M_{e e} \overline{N_{e}^{c}} N_{e}-\frac{f_{\mu}}{2}\left(\overline{N_{\mu}^{c}} N_{\mu} \phi_{2}^{\dagger}+\text { h.c. }\right)-\frac{f_{\tau}}{2}\left(\overline{N_{\tau}^{c}} N_{\tau} \phi_{2}+\text { h.c. }\right) \\
& \left.-\frac{1}{2} M_{\mu \tau} \overline{N_{\mu}^{c}} N_{\tau}+\overline{N_{\tau}^{c}} N_{\mu}\right)-\sum_{I=e, \mu, \tau}\left(Y_{I l}\left(\overline{\ell_{L}}\right) / \tilde{\eta} N_{I R}+\text { h.c }\right) \\
& -\sum_{q=d, s, b}\left(y_{q R} \overline{d_{q R}^{c}} S_{1} N_{\mu}+\text { h.c. }\right), \\
\mathcal{L}_{G-f}= & -g_{\mu \tau} \bar{\mu} \gamma^{\mu} \mu \hat{V}_{\mu}+g_{\mu \tau} \bar{\tau} \gamma^{\mu} \tau \hat{V}_{\mu}-g_{\mu \tau} \overline{\nu_{\mu}} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\mu} \hat{V}_{\mu} \\
& +g_{\mu \tau} \overline{\nu_{\tau}} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\tau} \hat{V}_{\mu}-g_{\mu \tau} \overline{N_{\mu}} \hat{V}_{\mu} \gamma^{\mu} \gamma^{5} N_{\mu}+g_{\mu \tau} \overline{N_{\tau}} \hat{V}_{\mu} \gamma^{\mu} \gamma^{5} N_{\tau}, \\
\mathcal{L}_{S}= & \left|\left(i \partial_{\mu}-\frac{g}{2} \tau^{a} \cdot \hat{\mathbf{W}}_{\mu}^{a}-\frac{g^{\prime}}{2} \hat{B}_{\mu}\right) \eta\right|^{2}+\left|\left(i \partial_{\mu}-\frac{g^{\prime}}{3} \hat{B}_{\mu}+g_{\mu \tau} \hat{V}_{\mu}\right) S_{1}\right|^{2} \\
+ & \left|\left(i \partial_{\mu}-2 g_{\mu \tau} \hat{V}_{\mu}\right) \phi_{2}\right|^{2}-V\left(H, \eta, \phi_{2}, S_{1}\right) .
\end{aligned}
$$

Scalar potential

- The scalar potential V is expressed as

$$
\begin{aligned}
V & \left(H, \eta, \phi_{2}, S_{1}\right)=V(H)+\mu_{\eta}^{2} \eta^{\dagger} \eta+\lambda_{H \eta}\left(H^{\dagger} H\right)\left(\eta^{\dagger} \eta\right)+\lambda_{\eta}\left(\eta^{\dagger} \eta\right)^{2} \\
& +\lambda_{H \eta}^{\prime}\left(H^{\dagger} \eta\right)\left(\eta^{\dagger} H\right)+\frac{\lambda_{H \eta}^{\prime \prime}}{2}\left[\left(H^{\dagger} \eta\right)^{2}+\text { h.c. }\right]+\mu_{\phi}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{\phi}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
& +\mu_{S}^{2}\left(S_{1}^{\dagger} S_{1}\right)+\lambda_{S}\left(S_{1}^{\dagger} S_{1}\right)^{2}+\left[\lambda_{H \phi}\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{H S}\left(S_{1}^{\dagger} S_{1}\right)\right]\left(H^{\dagger} H\right) \\
& +\lambda_{S \phi}\left(\phi_{2}^{\dagger} \phi_{2}\right)\left(S_{1}^{\dagger} S_{1}\right)+\lambda_{\eta \phi}\left(\phi_{2}^{\dagger} \phi_{2}\right)\left(\eta^{\dagger} \eta\right)+\lambda_{S \eta}\left(S_{1}^{\dagger} S_{1}\right)\left(\eta^{\dagger} \eta\right) .
\end{aligned}
$$

- SSB occurs when the scalars get their VEVs: $\left\langle\phi_{2}\right\rangle=\frac{v_{2}}{\sqrt{2}},\langle H\rangle=\frac{v}{\sqrt{2}}$, $S U(2)_{\llcorner } \times U(1)_{Y} \times U(1)_{L_{\mu}-L_{\tau}} \Longrightarrow S U(2)_{\llcorner } \times U(1)_{Y} \Longrightarrow U(1)_{e m}$
- We have $\mu_{\eta}^{2}, \mu_{S}^{2}>0$ and the masses of the SLQ and inert doublet η are

$$
\begin{aligned}
M_{S_{1}}^{2} & =2 \mu_{S}^{2}+\lambda_{H S} v^{2}+\lambda_{S \phi} v_{2}^{2} \\
M_{\eta_{c}}^{2} & =\mu_{\eta}^{2}+\lambda_{H \eta} v^{2} / 2+\lambda_{\eta \phi} v_{2}^{2} / 2 \\
M_{\eta_{r, i}}^{2} & =\mu_{\eta}^{2}+\left(\lambda_{H \eta}+\lambda_{H \eta}^{\prime} \pm \lambda_{H \eta}^{\prime \prime}\right) v^{2} / 2+\lambda_{\eta \phi} v_{2}^{2} / 2
\end{aligned}
$$

Gauge mixing

- For the mixing of $U(1)_{Y}$ and $U(1)_{L_{\mu}-L_{\tau}}$ gauge bosons, we consider the $G L(2, R)$ transformation

$$
\binom{\bar{B}_{\mu}}{\bar{V}_{\mu}}=\left(\begin{array}{cc}
1 & \sin \chi \\
0 & \cos \chi
\end{array}\right)\binom{\hat{B}_{\mu}}{\hat{V}_{\mu}} .
$$

- Thus, the mass matrix of gauge fields in the basis $\left(W_{\mu}^{3}, \bar{B}_{\mu}, \bar{V}_{\mu}\right)$ as

$$
M_{G}^{2}=\left(\begin{array}{ccc}
\frac{1}{8} g^{2} v^{2} & -\frac{1}{8} g g^{\prime} v^{2} & \frac{1}{8} g g^{\prime} \tan \chi v^{2} \\
-\frac{1}{8} g g^{\prime} v^{2} & \frac{1}{8} g^{\prime 2} v^{2} & -\frac{1}{8} g^{\prime 2} \tan \chi v^{2} \\
\frac{1}{8} g g^{\prime} \tan \chi v^{2} & -\frac{1}{8} g^{\prime 2} \tan \chi v^{2} & 2 g_{\mu \tau}^{2} \sec \chi^{2} v^{2}
\end{array}\right)
$$

- Diagonalization of M_{G}^{2} gives the masses of the physical gauge bosons

$$
\begin{aligned}
& M_{Z}^{2}=M_{Z_{S M}}^{2} \cos \alpha^{2}-\delta M^{2} \sin 2 \alpha+M_{\bar{V}}^{2} \sin \alpha^{2} \\
& M_{Z^{\prime}}^{2}=M_{Z_{S M}}^{2} \sin \alpha^{2}+\delta M^{2} \sin 2 \alpha+M_{\bar{V}}^{2} \cos \alpha^{2} \\
& \alpha=\frac{1}{2} \tan ^{-1}\left[\frac{2 \delta M^{2}}{M_{\bar{V}}^{2}-M_{Z_{S M}}^{2}}\right]
\end{aligned}
$$

Scalar and Fermion mixing

- The CP-even scalars h and h_{2} as well as the heavy fermion states N_{μ} and N_{τ} mix with the mixing matrices given as

$$
M_{H}^{2}=\left(\begin{array}{cc}
2 \lambda_{H} v^{2} & \lambda_{H \phi} v v_{2} \\
\lambda_{H \phi} v v_{2} & 2 \lambda_{\phi} v_{2}^{2}
\end{array}\right), \quad M_{N}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} f_{\mu} v_{2} & M_{\mu \tau} \\
M_{\mu \tau} & \frac{1}{\sqrt{2}} f_{\tau} v_{2}
\end{array}\right)
$$

One can diagonalize the above mass matrices using a 2×2 rotation matrix

$$
\begin{gathered}
U_{\zeta}^{T} M_{H}^{2} U_{\zeta}=\operatorname{diag}\left[M_{H_{1}}^{2}, M_{H_{2}}^{2}\right], \quad U_{\beta}^{T} M_{N} U_{\beta}=\operatorname{diag}\left[M_{-}, M_{+}\right] \\
\text {with } \zeta=\frac{1}{2} \tan ^{-1}\left(\frac{\lambda_{H \phi} v v_{2}}{\lambda_{\phi} v_{2}^{2}-\lambda_{H} v^{2}}\right), \beta=\frac{1}{2} \tan ^{-1}\left(\frac{2 M_{\mu \tau}}{\left(f_{\tau}-f_{\mu}\right)\left(v_{2} / \sqrt{2}\right)}\right) .
\end{gathered}
$$

- The lightest fermion mass eigenstate N_{-}considered as probable DM candidate, and $M_{H_{1}}$ as the SM Higgs

$M_{S_{1}}$	M_{+}	$M_{H_{1}}$	$M_{H_{2}}$	$\sin \beta$	$\sin \zeta$	χ	$\alpha \times 10^{4}$
1200	500	125	500	$1 / 2$	$10^{-3}-10^{-2}$	10^{-3}	$4.83-4.85$

Table: Values of the model parameters used in the analysis (masses are in GeV).

Dark Matter Relic Abundance

- The relic density of the light DM $\left(N_{-}\right)$is computed via freeze-out mechanism through the following decay channels:

$$
\begin{aligned}
N_{-} \bar{N}_{-} & \rightarrow \mu \bar{\mu}, \tau \bar{\tau}, \nu_{\mu} \bar{\nu}_{\mu}, \nu_{\tau} \bar{\nu}_{\tau}\left(s \text { channel } Z^{\prime} \text { and } \eta \text { portal }\right) \\
& \rightarrow d \bar{d}, s \bar{s}\left(t \text { channel } S L Q\left(S_{1}\right) \text { portal }\right)
\end{aligned}
$$

- DM relic density is computed by

$$
\Omega h^{2}=\frac{2.14 \times 10^{9} \mathrm{GeV}^{-1}}{g *^{1 / 2} M_{P I}} \frac{1}{J\left(x_{f}\right)}, \quad J\left(x_{f}\right)=\int_{x_{f}}^{\infty} \frac{\langle\sigma v\rangle(x)}{x^{2}} d x .
$$

where $x=M_{-} / T$ and x_{f} is the freeze out parameter.

Detection prospects

- SLQ portal spin-dependent (SD) cross section can arise from the effective interaction

$$
\mathcal{L}_{\mathrm{eff}}^{\mathrm{SD}} \simeq \frac{y_{q R}^{2} \cos ^{2} \beta}{4\left(M_{S_{1}}^{2}-M_{-}^{2}\right)}\left(\bar{N}_{-} \gamma^{\mu} \gamma^{5} N_{-}\right)\left(\bar{q} \gamma_{\mu} \gamma^{5} q\right)
$$

and the computed cross section is given as

$$
\sigma_{\mathrm{SD}}=\frac{\mu_{r}^{2}}{\pi} \frac{\cos ^{4} \beta}{\left(M_{S_{1}}^{2}-M_{-}^{2}\right)^{2}}\left[y_{d R}^{2} \Delta_{d}+y_{s R}^{2} \Delta_{s}\right]^{2} J_{n}\left(J_{n}+1\right)
$$

- The WIMP-nucleon cross section via $\left(Z, Z^{\prime}\right)$ portal and $\left(H_{1}, H_{2}\right)$ portal is found to be very small and insensitive to direct detection experiments.

Constraints from Flavour sector

- Model parameters of LQ and Z^{\prime} couplings can be constrained using $R_{K^{(*)}}$ and $\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)$.
- The effective Hamiltonian mediating $b \rightarrow s I^{+} I^{-}$is

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=1}^{6} C_{i}(\mu) O_{i}+\sum_{i=7,9,10}\left(C_{i}(\mu) O_{i}+C_{i}^{\prime}(\mu) O_{i}^{\prime}\right)\right] \\
& O_{7}^{(\prime)}=\frac{e}{16 \pi^{2}}\left[\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L(R)}+m_{b} P_{R(L)}\right) b\right] F^{\mu \nu} \\
& O_{9}^{(\prime)}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L(R)} b\right)\left(\bar{I} \gamma_{\mu} I\right), \quad O_{10}^{(\prime)}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L(R)} b\right)\left(\bar{I} \gamma_{\mu} \gamma_{5} I\right),
\end{aligned}
$$

- Following one loop diagrams provide non-zero contribution to the rare $b \rightarrow s / l$ processes (2nd and 3rd diagrams $\propto m_{q} M_{ \pm} / M_{S_{1}}^{2}$)

- Z^{\prime} exchange penguin diagram gives the transition amplitude of $b \rightarrow s / l$ process

$$
\left.\left.\mathcal{M}=\frac{1}{2^{5} \pi^{2}} \frac{y_{q R}^{2} g_{\mu \tau}^{2}}{\left(q^{2}-M_{Z^{\prime}}^{2}\right)} \mathcal{V}_{s b}\left(\chi_{-}, \chi_{+}\right)\left[\bar{u}\left(p_{B}\right) \gamma^{\mu}\left(1+\gamma_{5}\right) u\left(p_{K}\right)\right)\right]\left[\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right)\right)\right]
$$

which provides additional primed Wilson coefficient

$$
C_{9}^{\prime \mathrm{NP}}=\frac{\sqrt{2}}{2^{4} \pi G_{F} \alpha_{\mathrm{em}} V_{t b} V_{t s}^{*}} \frac{y_{q R}^{2} g_{\mu \tau}^{2}}{\left(q^{2}-M_{Z^{\prime}}{ }^{2}\right)} \mathcal{V}_{s b}\left(\chi_{-}, \chi_{+}\right)
$$

$\mathcal{V}_{s b}\left(\chi_{-}, \chi_{+}\right)$is the loop function and $\chi_{ \pm}=M_{ \pm}^{2} / M_{S_{1}}^{2}$.

- As only $C_{9}^{\prime N P}$ involves, $B_{s} \rightarrow \mu \mu(\tau \tau)$ won't play any role in constraining the new parameters.
- Absence of $Z^{\prime} \mu \tau$ coupling \Rightarrow LFV decays like $B \rightarrow K^{(*)} \mu \tau, \tau \rightarrow \mu \gamma$ and $\tau \rightarrow 3 \mu$ are not allowed
- Thus, using $R_{K} / R_{K^{*}}$ and $\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)$ observables, the $g_{\mu \tau}, M_{Z^{\prime}}$ and the $y_{q R}, M_{-}$allowed regions are shown below

- The allowed range of all the four new parameters consistent with flavor phenomenology

Parameters	$y_{q R}$	$g_{\mu \tau}$	$M_{-}(\mathrm{GeV})$	$M_{Z^{\prime}}(\mathrm{GeV})$
Allowed range	$0-2.0$	$0-0.01$	$0-2.5$	$1-6$

Table: The allowed regions of $y_{q R}, g_{\mu \tau}, M_{-}$and $M_{Z^{\prime}}$ parameters.

Footprints on $b \rightarrow s+\mathbb{E}$ decay modes

- In SM, b $\rightarrow s+$ missing energy can be described by the $b \rightarrow s \nu \bar{\nu}$
- The effective Hamiltonian in SM

$$
\mathcal{H}_{\text {eff }}=\frac{-4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left(C_{L}^{\nu} \mathcal{O}_{L}^{\nu}+C_{R}^{\nu} \mathcal{O}_{R}^{\nu}\right)+\text { h.c. }
$$

where

$$
\begin{gathered}
\mathcal{O}_{L}^{\nu}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s}_{R} \gamma_{\mu} b_{L}\right)\left(\bar{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu\right), \quad \mathcal{O}_{R}^{\nu}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s}_{L} \gamma_{\mu} b_{R}\right)\left(\bar{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu\right) \\
C_{L}^{\nu}=-X\left(x_{t}\right) / \sin ^{2} \theta_{w}, \quad X\left(x_{t}\right)=X_{0}\left(x_{t}\right)+\frac{\alpha_{s}}{4 \pi} X_{1}\left(x_{t}\right)
\end{gathered}
$$

- The branching ratios of $B_{(s)} \rightarrow K^{*}(\phi) \nu \bar{\nu}$ and their corresponding experimental limits are

Decay process	BR in the SM	Experimental limit
$B^{0} \rightarrow K^{0} \nu_{l} \bar{\nu}_{l}$	$(4.53 \pm 0.267) \times 10^{-6}$	$<2.6 \times 10^{-5}$
$B^{+} \rightarrow K^{+} \nu_{l} \bar{\nu}_{l}$	$(4.9 \pm 0.288) \times 10^{-6}$	$<1.6 \times 10^{-5}$
$B^{0} \rightarrow K^{* 0} \nu_{l} \bar{\nu}_{l}$	$(9.48 \pm 0.752) \times 10^{-6}$	$<1.8 \times 10^{-5}$
$B^{+} \rightarrow K^{*+} \nu_{l} \bar{\nu}_{l}$	$(1.03 \pm 0.06) \times 10^{-5}$	$<4.0 \times 10^{-5}$
$B_{s} \rightarrow \phi \nu_{l} \bar{\nu}_{l}$	$(1.2 \pm 0.07) \times 10^{-5}$	$<5.4 \times 10^{-3}$

- In this model, the additional process involved is

$$
b \rightarrow s+\text { missing energy }=b \rightarrow s \nu \nu+b \rightarrow s N_{-} N_{-}
$$

Footprints on $b \rightarrow s+\mathbb{E}$ decay modes

- The relevant one-loop diagram for $b \rightarrow s N_{-} N_{-}$is

- Thus, e.g., the amplitude of $B \rightarrow K N_{-} N_{-}$process from the Z^{\prime} exchanging diagram is

$$
\left.\left.\mathcal{M}=C^{\mathrm{NP}}\left(q^{2}\right)\left[\bar{u}\left(p_{B}\right) \gamma^{\mu}\left(1+\gamma_{5}\right) u\left(p_{K}\right)\right)\right]\left[\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right)\right)\right]
$$

where

$$
C^{\mathrm{NP}}\left(q^{2}\right)=\frac{1}{2^{5} \pi^{2}} \frac{y_{q R}^{2} g_{\mu \tau}^{2} \cos 2 \beta \cos \alpha \sec \chi}{q^{2}-M_{Z^{\prime}}^{2}} \mathcal{V}_{s b}\left(\chi_{-}, \chi_{+}\right)
$$

Predicted Results for $b \rightarrow s+\mathbb{E}$ decay modes

- We use two sets of benchmark values of new parameters, allowed by both the DM and flavor phenomenology

Benchmark	$y_{q R}$	$g_{\mu \tau}$	$M_{-}(\mathrm{GeV})$	$M_{Z^{\prime}}(\mathrm{GeV})$
Benchmark-I	2.0	0.002	1.7	4
Benchmark-II	2.0	0.008	1.8	4.8

Table: Benchmark values of $y_{q R}, M_{-}, g_{\mu \tau}$ and $M_{Z^{\prime}}$ parameters used in our analysis.

Predicted Results for $b \rightarrow s+\mathbb{E}$ decay modes

Predicted Results for $b \rightarrow s+\mathbb{F}$ decay modes

- For Benchmark-I, there is a singularity at $q^{2}=M_{Z^{\prime}}^{2}$, i.e., $q^{2}=16 \mathrm{GeV}^{2}$. To avoid it, we use the cuts at $\left(M_{Z^{\prime}}-0.002\right)^{2} \leq q^{2} \leq\left(M_{Z^{\prime}}+0.002\right)^{2}$ GeV^{2}.

$\operatorname{Br}(b \rightarrow s \notin)$	Benchmark-I	Benchmark-II	Experimental Limit
$\operatorname{Br}\left(B^{0} \rightarrow K^{0} \nsubseteq\right)$	0.645×10^{-5}	0.457×10^{-5}	$<2.6 \times 10^{-5}$
$\operatorname{Br}\left(B^{+} \rightarrow K^{+} \nsubseteq\right)$	0.697×10^{-5}	0.516×10^{-5}	$<1.6 \times 10^{-5}$
$\operatorname{Br}\left(B^{0} \rightarrow K^{* 0} \nsubseteq\right)$	1.271×10^{-5}	0.981×10^{-5}	$<1.8 \times 10^{-5}$
$\operatorname{Br}\left(B^{+} \rightarrow K^{*+} \nsubseteq\right)$	1.381×10^{-5}	1.066×10^{-5}	$<4.0 \times 10^{-5}$
$\operatorname{Br}\left(B_{s} \rightarrow \phi \not \subset\right)$	1.618×10^{-5}	1.24×10^{-5}	$<5.4 \times 10^{-3}$

Table: The predicted branching ratios of $b \rightarrow s \notin$ processes for two different benchmark values of new parameters.

Conclusion

- We explored GeV scale dark matter and flavour anomalies in a $U(1)_{L_{\mu}-L_{\tau}}$ gauge extension of SM with an additional ($\overline{\mathbf{3}}, \mathbf{1}, 1 / 3$) Scalar LQ.
- Relic density is investigated in Z^{\prime} portal and the spin-dependent WIMP-nucleon cross section in SLQ-portal.
- In flavor sector, the model parameters are constrained from experimental limits on $R_{K} / R_{K^{*}}$ and $B \rightarrow X_{s} \gamma$.
- We have shown the impact on rare B meson decays to missing energy, the observation of these modes would provide strong hints for the existence of light fermionic dark matter.
- This simple gauge extension provides an ideal platform to address the phenomenological perspectives of dark matter and flavor anomalies simultaneously.

