# Exploring non-standard interactions sensitivities in DUNE and T2HK

Anjan Giri

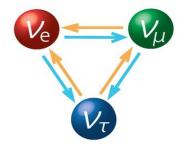
IIT Hyderabad

25 July, 2022





Barnali Brahma, Anjan Giri (IITH)


## • Neutrino: Mysterious elusive particle

### Open Questions

- CP violation in lepton sector ?
- Majorana or Dirac ?
- Absolute mass of neutrinos ?
- Mass ordering: sign of  $(\Delta m_{13}^2)$  ?
- $heta_{23} > \pi/4$ ,  $heta_{23} < \pi/4$ ,  $heta_{23} = \pi/4$  ?
- Sterile neutrino(s) ?

### Neutrino Oscillations

• Neutrino oscillations provide pathway to Physics beyond the standard model.



- Three neutrino flavor eigenstates ( $\nu_e$ ,  $\nu_\mu$ ,  $\nu_\tau$ ) are unitary linear combinations of three neutrinos mass eigenstates ( $\nu_1$ ,  $\nu_2$ ,  $\nu_3$ ) with masses  $m_1$ ,  $m_2$ ,  $m_3 \rightarrow$  Neutrino mixing
- standard parameterization for PMNS matrix:

$$U_{PMNS} = U_{23}(\theta_{23})U_{13}(\theta_{13}, \delta_{cp})U_{12}(\theta_{12})$$

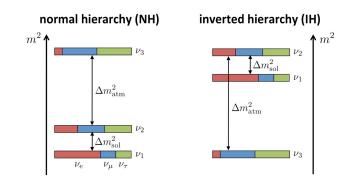
#### **CP** Violation

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Controls CP Violation
$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- strength of CP violation is parameterized by the Jarlskog invariant:  $J_{CP}^{PMNS} = \sin \theta_{12} \cos \theta_{12} \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{23} \cos \theta_{23} \sin \delta_{cp}$
- For quarks,

$$J_{CKM} pprox 3 imes 10^{-5}$$

• Using the recent results of nuFit v5.1, in lepton sector:


$$\mathsf{J}_{PMNS}pprox 0.034.\sin\delta_{CP}$$

- CPV can be measured in oscillation experiment  $P(\nu_{lpha} 
  ightarrow 
  u_{eta})$
- Comparing neutrino probability with anti-neutrino probability
- So for CP Violation in neutrino mixing matrix

$$P(
u_{lpha} 
ightarrow 
u_{eta}) 
eq P(ar{
u_{lpha}} 
ightarrow ar{
u_{eta}})$$

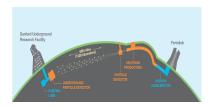
• In this discussion, we will use  $P(\nu_{\mu} \rightarrow \nu_{e})$  as oscillation channel.

#### The Mass Ordering?



• mass splitting:  $|\Delta m^2_{31}| = 2.517 \times 10^{-3} eV^2$ ,  $\Delta m^2_{21} = 7.42 \times 10^{-5} eV^2$ 

## Long Baseline Experiments: NO $\nu A$ and DUNE




- Detect neutrinos in Fermilab's NuMI beam
- 14 mrad off-axis, E pprox 2 GeV
- Active liquid scintillator calorimeter
- Baseline  $\rightarrow$  810 Km
- Two Detectors:
  - Near detector ightarrow 0.3 kt
  - Far Detector ightarrow 14 kt



# DUNE

- proposed future superbeam experiment at Fermilab
- Liquid Argon (LAr) detector of mass 40 kt
- $\bullet \ \, {\sf Baseline} \to 1300 \ \, {\sf Km}$
- Far detector → Homestake mine in South Dakota.



# Long Baseline Experiments: T2K and T2HK



- Detect neutrinos in JPARC beam
- 43 mrad off-axis, E  $\approx$  0.65 GeV
- water Chrenkov Detector
- Baseline  $\rightarrow$  295 Km
- Two Detectors:
  - Near Detector  $\rightarrow$  ND280, 280 metres from the target
  - Far Detector  $\rightarrow$  (Super K), 295 km from the target in Tokai.



# T2HK

- Upgraded version of T2K
- fiducial mass will be increased by about twenty times
- will contain two 187 kt third generation Water Cherenkov detectors
- Baseline  $\rightarrow$  295 Km



25 July, 2022

- The main difference between NO $\nu$ A-T2K as well as DUNE-T2HK is the baseline and matter density, apart from energy.
- $\bullet$  Neutrinos at NO $\nu A$  and DUNE experience stronger matter effects than T2K and T2HK
- New physics signature could probably be inferred from this exercise
- New Physics  $\rightarrow$  Non-standard Interactions (NSI)

#### Non-standard Interactions

 NSI can be characterised by dimension-six four-fermion operators of the form:

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_{F}\sum_{\alpha,\beta,f,P} \epsilon^{f,P}_{\alpha\beta} [\overline{\nu_{\alpha}}\gamma^{\mu}\nu_{\beta}][\overline{f}\gamma_{\mu}f]$$
(1)

 The neutrino propagation Hamiltonian in the presence of matter, NSI, can be expressed as

$$H_{Eff} = \frac{1}{2E} \begin{bmatrix} U_{PMNS} \begin{bmatrix} 0 & 0 & 0\\ 0 & \delta m_{21}^2 & 0\\ 0 & 0 & \delta m_{31}^2 \end{bmatrix} U_{PMNS}^{\dagger} + V \end{bmatrix}$$
(2)

where,

$$V = 2\sqrt{2}G_{F}N_{e}E\begin{bmatrix}1 + \epsilon_{ee} & \epsilon_{e\mu}e^{i\phi_{e\mu}} & \epsilon_{e\tau}e^{i\phi_{e\tau}}\\\epsilon_{\mu e}e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau}e^{i\phi_{\mu\tau}}\\\epsilon_{\tau e}e^{-i\phi_{e\tau}} & \epsilon_{\tau\mu}e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau}\end{bmatrix}$$

 In the presence of NSI from eµ and eτ sector, the probability can be expressed as the sum of terms \*:

$$P = P_0 + P_1 + P_2 + h.o.$$

where

$$P_0 = 4s_{13}^2s_{23}^2f^2 + 8s_{13}s_{23}s_{12}c_{12}c_{23}rfg\cos(\Delta + \delta_{CP}) + 4r^2s_{12}^2c_{12}^2c_{23}^2g^2$$

•  $P_0$  denotes the SM probability expression where

$$f \equiv rac{\sin\left[(1-\hat{A})\Delta
ight]}{1-\hat{A}}$$
,  $g \equiv rac{\sin\hat{A}\Delta}{\hat{A}}$ ,  $\hat{A} = rac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2}$ ,  $\Delta = rac{\Delta m_{31}^2 L}{4E}$ ,  $r = rac{\Delta m_{21}^2}{\Delta m_{31}^2}$ 

(\*Phys.Rev.D77:013007,2008, JHEP 0903:114,2009, JHEP 0904:033,2009, Phys.Rev.D93,093016(2016))

#### Probability

$$P_{1} = 8\hat{A}\epsilon_{e\mu}[s_{13}s_{23}[s_{23}^{2}f^{2}\cos(\Psi_{e\mu}) + c_{23}^{2}fg\cos(\Delta + \Psi_{e\mu})] + 8rs_{12}c_{12}c_{23}$$
$$[c_{23}^{2}g^{2}\cos\Psi_{e\mu} + s_{23}^{2}g\cos(\Delta - \phi_{e\mu})]]$$
$$where \Psi_{e\mu} = \phi_{e\mu} + \delta_{CP}$$

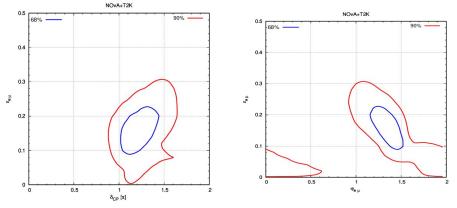
•  $P_0$  along with  $P_1$  denotes the probability expression for SM along with NSI from  $e\mu$  sector

$$P_{2} = 8\hat{A}\epsilon_{e\tau}[s_{13}c_{23}[s_{23}^{2}f^{2}\cos(\Psi_{e\tau}) - s_{23}^{2}fg\cos(\Delta + \Psi_{e\tau})] - 8rs_{12}c_{12}s_{23}$$
$$[c_{23}^{2}g^{2}\cos\Psi_{e\tau} - c_{23}^{2}g\cos(\Delta - \phi_{e\tau})]]$$
where  $\Psi_{e\tau} = \phi_{e\tau} + \delta_{CP}$ 

•  $P_0$  along with  $P_2$  denotes the probability expression for SM along with NSI from e au sector

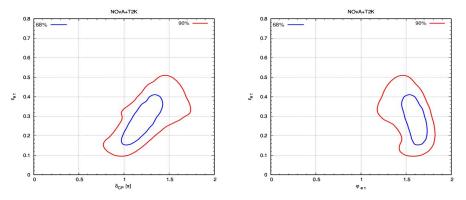
Barnali Brahma, Anjan Giri (IITH)

• The flavor changing parameter of NSI:


$$|\epsilon_{e\mu}|e^{i\phi_{e\mu}}$$
,  $|\epsilon_{e au}|e^{i\phi_{e au}}$ ,  $|\epsilon_{\mu au}|e^{i\phi_{\mu au}}$ 

- In this work, we consider only the propagation NSI.
- Will discuss the effect of NSI ranges on sensitivity as well as oscillation probability plots for DUNE and T2HK.
- Use GLoBES and and its additional public tools to deal with non-standard interactions \*.

(\*Comp.Phys.Comm, 167 (2005) 195; Comp. Phys. Comm, 177 (2007) 432; https://www.mpi-hd.mpg.de/personalhomes/globes/tools/snu-1.0.pdf (2010).)


# NSI, $\epsilon_{e\mu}$ Sector

- Allowed regions in the plane spanned by NSI coupling  $\epsilon_{e\mu}$  and the standard CP phase (left) and NSI coupling  $\epsilon_{e\mu}$  and corresponding phase  $\phi_{e\mu}$ (right) determined by the combination of T2K and NO $\nu$ A for NO.
- The allowed regions at the 68% and 90% C.L.



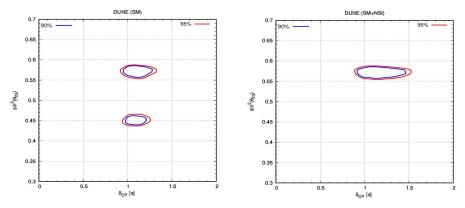
# NSI, $\epsilon_{e\tau}$ Sector

- Allowed regions in the plane spanned by NSI coupling  $\epsilon_{e\tau}$  and the standard CP phase (left) and NSI coupling  $\epsilon_{e\tau}$  and corresponding phase  $\phi_{e\tau}$ (right) determined by the combination of T2K and NO $\nu$ A for NO.
- The allowed regions at the 68% and 90% C.L.



#### **NSI** Range

From allowed region plots in the previous slides, the best fit points are:

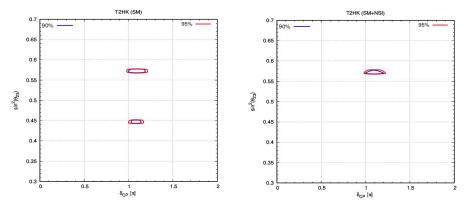

| MO | NSI                | $ \epsilon_{lphaeta} $ | $\phi_{lphaeta}/\pi$ | $\chi^2$ |
|----|--------------------|------------------------|----------------------|----------|
| NO | $\epsilon_{e\mu}$  | 0.14                   | 1.40                 | 2.966    |
|    | $\epsilon_{e\tau}$ | 0.26                   | 1.64                 | 0.252    |
| 10 | $\epsilon_{e\mu}$  | 0.01                   | 1.00                 | 0.147    |
|    | $\epsilon_{e\tau}$ | 0.16                   | 1.64                 | 0.093    |

- In SM Plots the standard parameters  $\theta_{13}$  is marginalized
- In SM+NSI plots, along with  $\theta_{13}$  the NSI magnitudes  $(|\epsilon_{e\mu}|, |\epsilon_{e\tau}|)$  as well as phase  $(\phi_{e\mu}, \phi_{e\tau})$  are marginalized
- $\bullet\,$  The plots display the allowed regions at the 90% and 95% level

#### DUNE Sensitivity with NSI inclusion

SM, NO

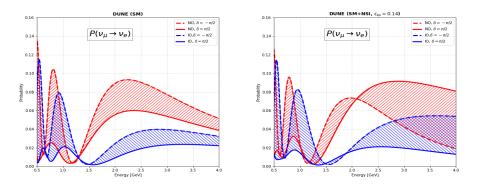
SM+NSI,  $\epsilon_{e\mu}$  Sector, NO




• With inclusion of NSI from  $e - \mu$  sector, the allowed region corresponding to the lower octant in DUNE vanishes.

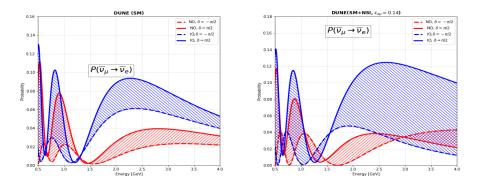
#### T2HK Sensitivity with NSI inclusion

SM, NO


SM+NSI,  $\epsilon_{e\mu}$  Sector, NO

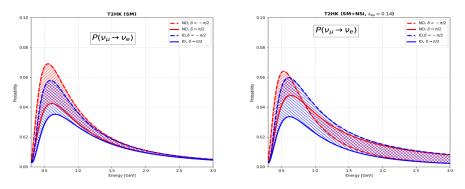


• With inclusion of NSI from  $e - \mu$  sector, the allowed region corresponding to the lower octant vanishes.


# Probability, $P(\nu_{\mu} \rightarrow \nu_{e})$ (DUNE)

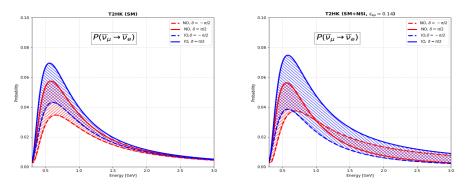
- For SM scenario, we see a good separation between NO-IO for both  $\delta_{CP} = 90^{\circ}$  as well as  $\delta_{CP} = -90^{\circ}$ .
- For SM+NSI scenario, we see a further good separation between NO-IO for  $\delta_{CP} = 90^{\circ}$  whereas the NO-IO separation continuously decreases for  $\delta_{CP} = -90^{\circ}$  and crosses each other at 2.75 GeV.



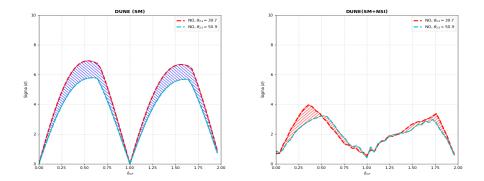

# Probability, $P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}})$ (DUNE)

- For SM scenario, we see a good separation between NO-IO for both  $\delta_{CP} = 90^{\circ}$  as well as  $\delta_{CP} = -90^{\circ}$ .
- For SM+NSI scenario, we see a further good separation between NO-IO for  $\delta_{CP} = 90^{\circ}$  whereas the NO-IO separation continuously decreases for  $\delta_{CP} = -90^{\circ}$  and crosses each other at 2.5 GeV.

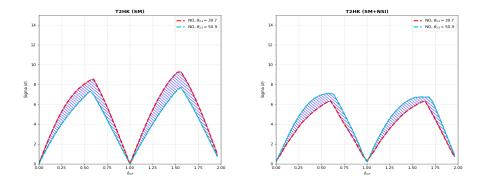



# Probability, $P(\nu_{\mu} \rightarrow \nu_{e})$ (T2HK)

- For SM scenario, we see a perceivable separation between NO-IO for both  $\delta_{CP} = 90^{\circ}$  as well as  $\delta_{CP} = -90^{\circ}$  till 1.3 GeV.
- For SM+NSI case from  $e \mu$  sector, we see a better separation between NO-IO for  $\delta_{CP} = 90^{\circ}$ . The NO-IO separation continuously decreases for  $\delta_{CP} = -90^{\circ}$  crossing each other at 0.7 GeV and then the separation increases thereafter.




# Probability, $P(\bar{ u_{\mu}} ightarrow \bar{ u_{e}})$ (T2HK)


- For SM scenario, we see a perceivable separation between NO-IO for both  $\delta_{CP} = 90^{\circ}$  as well as  $\delta_{CP} = -90^{\circ}$  till 1.3 GeV.
- For SM+NSI case from  $e \mu$  sector, we see a better separation between NO-IO for  $\delta_{CP} = 90^{\circ}$ . The NO-IO separation continuously decreases for  $\delta_{CP} = -90^{\circ}$  crossing each other at 0.7 GeV and then the separation increases thereafter.



CP discovery potential as a function of the true value of the leptonic CP phase for NO in SM(left) and SM+NSI(right) case



CP discovery potential as a function of the true value of the leptonic CP phase for NO in SM(left) and SM+NSI(right) case



- When NSI is included with SM, the allowed region corresponding to the lower octant disappears for both DUNE and T2HK
- For DUNE, NO-IO probabilities separation look good for any  $\delta$  in SM whereas in SM+NSI the separation is good only for  $\delta_{CP} = 90^{\circ}$  in both  $\nu$  and  $\bar{\nu}$  case.
- For T2HK, NO-IO probabilities separation look good for any  $\delta$  in SM whereas in SM+NSI the separation is good only for  $\delta_{CP} = 90^{\circ}$  in both  $\nu$  and  $\bar{\nu}$  case (Similar to DUNE).
- CP discovery potential gets affected with inclusion of NSI for both DUNE and T2HK.

#### Thank You !!