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Axions and Axion-Like-Particles (ALPs)

o One of the strongest BSM candidates: Strong CP problem, dark matter, ...

o At low energies, and high temperatures, it has the effective potential:

Vi D m?(T)F? {1 s <$)} — NY(T)[L — cos (8)]

e The mass (barrier-height) is in general temperature-dependent:

T -
= ,T>T,
wn i) (F) T2
1 T < Te
QCD axion Generic ALP
mef? ~ (76 MeV)*, v ~ 8, T.~ 150 MeV mo, f,7, Te are free parameters.
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Pre- and post-inflationary scenario

Post-inflationary scenario Pre-inflationary scenario (This work)
o Different initial angle in each Hubble patch. e Random initial angle in the observable
e Inhomogeneous including topological defects. universe.

e Initially homogeneous w/o topological defects.
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Dark matter from ALPs: Misalignment mechanisms

Zhang,Chiueh 1705.01439; Arvanitaki et al. 1909.11665
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Co et al. 1910.14152; Chang et al. 1911.11885

O £0

Rolling w ~ 1 Oscillating w =~ 0

1
1
¢2I
2 ol
G 2l
53 =1
5 I
= =i
b jet]
1
S
o T
e o1
< é\i
g

Time

3/15


https://arxiv.org/abs/1705.01439
https://arxiv.org/abs/1909.11665
https://arxiv.org/abs/1910.14152
https://arxiv.org/abs/1911.11885

ALP dark matter parameter space (with KSVZ-like photon coupling gy, = (em/27)(1.92/f))
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ALP fluctuations and the mode functions

o Even in the pre-inflationary scenario ALP field has some fluctuations on top of the homogeneous
background which can be described by the mode functions in the Fourier space.

9(t,x):@(t)+/%

o These fluctuations are seeded by adiabatic and/or isocurvature perturbations:

ik-%

Ore + h.c.

e Due to the energy density perturbations of the e If ALPs exist during inflation and are light
dominating component, unavoidable. m < Hiy¢, they pick up quantum fluctuations:

e Can be avoided/suppressed if ALP has a large
mass during inflation, or fise > fioday-

o Even though the fluctuations are small initially, they can be enhanced exponentially later via
tachyonic instability and/or parametric resonance yielding to fragmentation.
Greene et al. hep-ph/9808477; Jaeckel et al. 1605.01367; Cedeno et al. 1703.10180

Berges et al. 1903.03116; Fonseca et al. 1911.08472; Morgante et al. 2109.13823
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Parametric resonance CE, Servant, Sgrensen, Sato 2206.14259
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Initial conditions for the ALP mode functions

o To determine the power spectrum after the fluctuations, we need to specify the initial conditions

before the fragmentation:
Py (k) = lim ‘Oi(t)‘
t—t;

o At early times when the axion mass can be neglected the mode functions 6 obey

.. . k2 L.
Ok + 3HO, + ¥9k = —40,0, &, = curvature perturbations in the radiation era

e Assuming only adiabatic initial conditions, we analytically calculated the field power spectrum at

early times as

. 2 2 NG
Py (k) ~ 2/% (%) AS(%) cos’ (aiH) As = 2.101 x 10~° (Planck 2018)
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Efficiency of fragmentation

o The efficiency of the fragmentation A can be estimated by comparing the energy density in the

fluctuations to the one in the homogeneous mode:

_ Pfluct my Ong . o k
A=—x A drexp| — B * 1= quantities at trappin K=
o \;/9/ p H. \O’l:'/) ) q pping, —
~10— ~O(1

e The fragmentation is incomplete if A < 1, and complete if A 2 1.

o The boundary is mainly determined by m./H. due to the exponential dependence:

M
H.

~ O(1) x 40

boundary

where the O(1) factor depends mildly on the high-temperature scaling of the axion mass.
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Fragmentation regions on the ALP parameter space
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Fragmentation regions on the ALP parameter space
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Fragmentation regions on the ALP parameter space
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Fragmentation regions
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Fragmentation regions for the QCD axion

Axion decay constant 7 [GeV'1]

10¢

1077

102 N8

10~

10710 -

v

10—11 L=

10—12
1078

Tempereture —dependent axion mass with y=8, Preliminary

CE, Servant, Sgrensen and Sato 2206.14259

wative |

stars.

\\\cﬂ\“’("rwl

SOWIA

MADMAX =

Plasma Haloscope. —

— ddvd
\
AN
£
\
—
\
\
\
\
\
-
\
\
\
\
\

107 1072 1 102
Axion mass mg [eV]

10/15



Lifetime of a fluctuation mode

(CE and Servant 2207.10111]
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Lifetime of a fluctuation mode
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Halo mass function

X(M) = (M/pm)dn/dinM
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Halo spectrum and gravitational observables
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Experimental prospects from Tilburg et al. 1804.01991; Arvanitaki et al. 1909.11665; Ramani et al. 2005.03030
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Conclusions

o In models where the ALP field has a large initial kinetic energy, ALP fluctuations play a prominent
role, and can yield complete fragmentation.

o The efficiency of the fragmentation is mainly determined by the hierarchy of the axion mass and
Hubble scale at trapping

o After the fragmentation, the power spectrum becomes O(1) which leads to much denser dark matter
halos.

o All the discussion is applicable to the QCD axion, to a generic ALP model, and also to other kind of
potentials such as monodromy (Ongoing project with Aleksandr Chatrchyan, Matthias Koschnitzke,
Géraldine Servant)

e The initial conditions can be motivated by various UV completions (CE, Servant, Sgrensen, Sato. to
appear), see also the talk by Keisuke Harigaya.
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Thank you for listening!

Contact: Cem Eroncel

DESY. Deutsches 0000-0002-9308-1449
Elektronen-Synchrotron Theory

www.desy.de cem.eroncel@desy.de
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