## **ALP Dark Matter from Kinetic Fragmentation**

Opening up the parameter window and observational consequences

#### Cem Eröncel (DESY)

PASCOS 2022 — 28.07.2022

In collaboration with Géraldine Servant, Philip Sørensen and Ryosuke Sato Based on 2206.14259 and 2207.10111



## Axions and Axion-Like-Particles (ALPs)

- One of the strongest BSM candidates: Strong CP problem, dark matter, ...
- At low energies, and high temperatures, it has the effective potential:

$$V_{\mathsf{ALP}} \supset m^2(T) f^2 \left[ 1 - \cos \left( \frac{\phi}{f} \right) \right] = \Lambda_b^4(T) [1 - \cos \left( \theta \right)]$$

• The mass (barrier-height) is in general temperature-dependent:

$$egin{aligned} \emph{m}^2(\emph{T}) &pprox \emph{m}_0^2 imes \left\{ \left(rac{\emph{T}_c}{\emph{T}}
ight)^{-\gamma} &, \emph{T} \geq \emph{T}_c \ 1 &, \emph{T} < \emph{T}_c \end{aligned} 
ight.$$

### QCD axion

$$\emph{m}_{0}^{2}\emph{f}^{2} pprox (76\,\mathrm{MeV})^{4},\; \gamma pprox 8,\; \emph{T}_{c} pprox 150\,\mathrm{MeV}$$

#### Generic ALP

 $m_0, f, \gamma, T_c$  are free parameters.

## Pre- and post-inflationary scenario



#### Post-inflationary scenario

- Different initial angle in each Hubble patch.
- Inhomogeneous including topological defects.

# Pre-inflationary scenario (This work)

- Random initial angle in the observable universe.
- Initially homogeneous w/o topological defects.

## Dark matter from ALPs: Misalignment mechanisms





# ALP dark matter parameter space (with KSVZ-like photon coupling $g_{\theta\gamma}=(\alpha_{\rm em}/2\pi)(1.92/f)$ )



# ALP dark matter parameter space (with KSVZ-like photon coupling $g_{\theta\gamma}=(\alpha_{\rm em}/2\pi)(1.92/f)$ )



# ALP dark matter parameter space (with KSVZ-like photon coupling $g_{\theta\gamma}=(\alpha_{\rm em}/2\pi)(1.92/f)$ )



#### **ALP** fluctuations and the mode functions

 Even in the pre-inflationary scenario ALP field has some fluctuations on top of the homogeneous background which can be described by the mode functions in the Fourier space.

$$\theta(t, \mathbf{x}) = \Theta(t) + \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \theta_k e^{i\vec{k}\cdot\vec{\mathbf{x}}} + \text{h.c.}$$

• These fluctuations are seeded by adiabatic and/or isocurvature perturbations:

### Adiabatic perturbations (This work)

• Due to the energy density perturbations of the dominating component, unavoidable.

#### Isocurvature perturbations

- If ALPs exist during inflation and are light  $m \ll H_{\rm inf}$ , they pick up quantum fluctuations:
- Can be avoided/suppressed if ALP has a large mass during inflation, or  $f_{\rm inf} \gg f_{\rm today}$ .
- Even though the fluctuations are small initially, they can be enhanced exponentially later via tachyonic instability and/or parametric resonance yielding to **fragmentation**.

 $\hbox{Greene et al. hep-ph/9808477; Jaeckel et al. 1605.01367; Cedeno et al. 1703.10180 } \\$ 

Berges et al. 1903.03116; Fonseca et al. 1911.08472; Morgante et al. 2109.13823



#### Initial conditions for the ALP mode functions

• To determine the power spectrum *after* the fluctuations, we need to specify the *initial* conditions *before* the fragmentation:

$$P_{ heta}^{\mathsf{ini}}(k) = \lim_{t o t_i} \left| heta_k^2(t) 
ight|$$

• At early times when the axion mass can be neglected the mode functions  $\theta_k$  obey

$$\ddot{\theta}_k + 3H\dot{\theta}_k + \frac{k^2}{a^2}\theta_k = -4\dot{\Phi}_k\dot{\Theta}, \quad \Phi_k := \text{curvature perturbations in the radiation era}$$

 Assuming only adiabatic initial conditions, we analytically calculated the field power spectrum at early times as

$$P_{\theta}^{\rm ini}(k) \approx \frac{2\pi^2}{k^3} \left(\frac{1}{3}\right)^2 A_{\rm s} \left(\frac{\dot{\Theta}}{H}\right)^2 \cos^2\left(\frac{k}{aH}\right), \quad A_{\rm s} = 2.101 \times 10^{-9} \; (\text{Planck 2018})$$

## **Efficiency of fragmentation**

• The efficiency of the fragmentation  $\Delta$  can be estimated by comparing the energy density in the fluctuations to the one in the homogeneous mode:

$$\Delta \equiv \frac{\rho_{\mathsf{fluct}}}{\rho_{\Theta}} \propto \underbrace{\mathcal{A}_{\mathsf{s}}}_{\sim 10^{-9}} \int \mathrm{d}\kappa \exp\left(\frac{m_*}{H_*} \underbrace{\mathcal{B}_{\kappa}}_{\sim \mathcal{O}(1)}\right), \quad * := \mathsf{quantities} \; \mathsf{at} \; \mathsf{trapping}, \quad \kappa \equiv \frac{k}{m_* a_*}$$

- The fragmentation is incomplete if  $\Delta \lesssim 1$ , and complete if  $\Delta \gtrsim 1$ .
- The boundary is mainly determined by m<sub>\*</sub>/H<sub>\*</sub> due to the exponential dependence:

$$\left. rac{m_*}{H_*} \right|_{ ext{boundary}} \sim \mathcal{O}(1) imes 40$$

where the  $\mathcal{O}(1)$  factor depends mildly on the high-temperature scaling of the axion mass.









## Fragmentation regions for the QCD axion



#### Lifetime of a fluctuation mode



### Lifetime of a fluctuation mode



### **Halo mass function**



## Halo spectrum and gravitational observables



Experimental prospects from Tilburg et al. 1804.01991; Arvanitaki et al. 1909.11665; Ramani et al. 2005.03030

#### **Conclusions**

- In models where the ALP field has a large initial kinetic energy, ALP fluctuations play a prominent role, and can yield complete fragmentation.
- The efficiency of the fragmentation is mainly determined by the hierarchy of the axion mass and Hubble scale at trapping.
- After the fragmentation, the power spectrum becomes  $\mathcal{O}(1)$  which leads to much denser dark matter halos.
- All the discussion is applicable to the QCD axion, to a generic ALP model, and also to other kind of potentials such as monodromy (Ongoing project with Aleksandr Chatrchyan, Matthias Koschnitzke, Géraldine Servant)
- The initial conditions can be motivated by various UV completions (CE, Servant, Sørensen, Sato. to appear), see also the talk by Keisuke Harigaya.

## Thank you for listening!

#### Contact:

**DESY.** Deutsches Elektronen-Synchrotron www.desy.de Cem Eröncel

0000-0002-9308-1449

Theory

cem.eroncel@desy.de