

Axion quality from the symmetric of SU(N)

M.Ardu, L.Di Luzio, GL, A.Strumia, D.Teresi, J.W.Wang

arXiv [2007.12663]

Giacomo Landini PASCOS22- Heidelberg 26/07/2022

Introduction

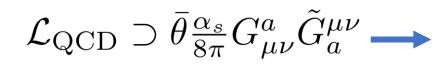
The Peccei-Quinn solution to the Strong CP problem is *problematic*

Peccei-Quinn must be an extremely good symmetry of high-energy physics

Peccei-Quinn (axion) quality problem

The Strong CP problem

The QCD Lagrangian violates CP symmetry



Gauge-invariant + renormalizable Non-perturbative QCD (istantons)

Natural expectation $\bar{\theta} \sim \mathcal{O}(1)$

Prediction: electric dipole moment for the neutron

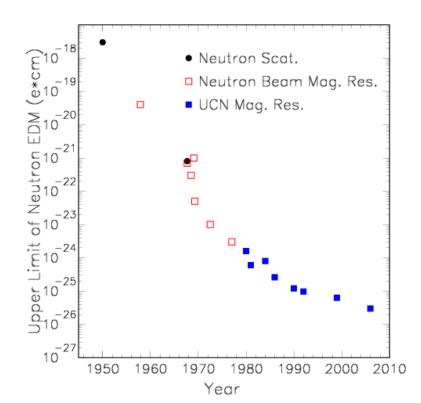
 $d_n \approx 10^{-16} |\bar{\theta}| e \text{ cm}$

The Strong CP problem

The QCD Lagrangian violates CP symmetry

 $\mathcal{L}_{\rm QCD} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \longrightarrow$

Gauge-invariant + renormalizable Non-perturbative QCD (istantons) Natural expectation $\bar{\theta} \sim \mathcal{O}(1)$



Upper bound $\bar{\theta} \leq 10^{-10}$

Why so small??

Peccei-Quinn mechanism

A new global chiral U(1) symmetry + charged scalar field Φ

1) Spontaneously broken \longrightarrow a new Goldstone boson: the *axion* $\Phi(x) \simeq f_a e^{ia(x)/f_a}$ $a(x) \stackrel{PQ}{\rightarrow} a(x) + \gamma f_a$

2) QCD anomaly

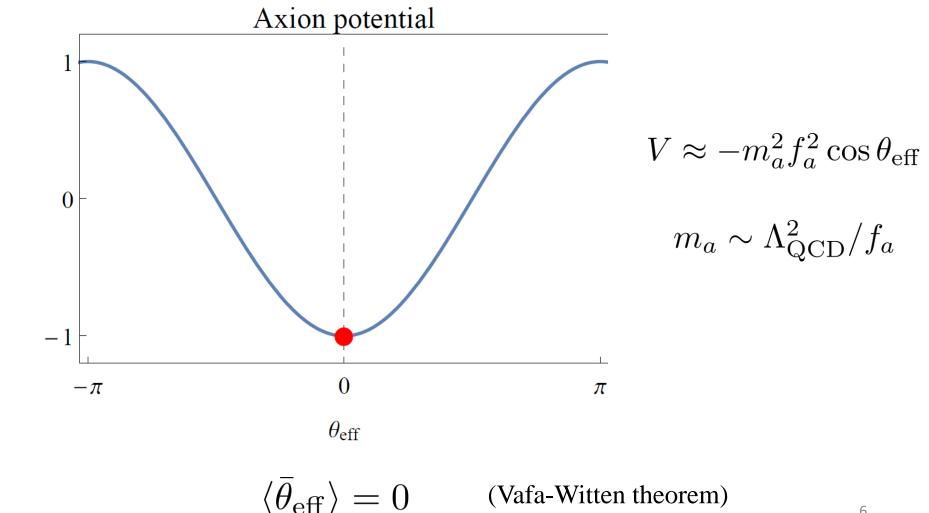
generates a potential for the axion

Colored fermions charged under U(1)

$$\mathcal{L}_{\text{QCD}}^{\text{PQ}} \supset \theta_{\text{eff}}(x) \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$$
$$\theta_{\text{eff}}(x) \equiv \bar{\theta} - \frac{a(x)}{f_a}$$

Peccei-Quinn mechanism

The QCD potential relaxes to the CP-conserving minimum



Global symmetries

We assume that *global symmetries* are not fundamental but *accidental*

They arise at low-energy (e.g. from gauge invariance)

 $\mathcal{L} = \mathcal{L}^{(4)}$ Ex: baryon/lepton number in the SM

They are broken by higher-dimensional operators in EFT (UV physics)

$$\Delta \mathcal{L}_{\mathrm{UV}} \sim \frac{1}{\Lambda_{\mathrm{UV}}^{d-4}} \mathcal{O}^{[d]}_{\mathrm{F}}$$

Ex: Towers of new states in string theory

+ Quantum gravity conjectures: gravity violates all global symmetries

Global symmetries

We assume that global symmetries are not fundamental but accidental

They arise at low-energy (e.g. from gauge invariance)

 $\mathcal{L} = \mathcal{L}^{(4)}$ Ex: baryon/lepton number in the SM

They are broken by higher-dimensional operators in EFT (UV physics)

$$\Delta \mathcal{L}_{\rm UV} \sim \frac{1}{\Lambda_{\rm UV}^{d-4}} \mathcal{O}^{[d]}$$
 dimension of the operator

+ Quantum gravity conjectures: gravity violates all global symmetries

Global symmetries

We assume that *global symmetries* are not fundamental but *accidental*

They arise at low-energy (e.g. from gauge invariance)

 $\mathcal{L} = \mathcal{L}^{(4)}$ Ex: baryon/lepton number in the SM

They are broken by higher-dimensional operators in EFT (UV physics)

$$\Delta \mathcal{L}_{\rm UV} \sim \underbrace{\stackrel{1}{\Lambda_{\rm UV}^{d-4}}}_{\rm UV} \underbrace{\mathcal{O}^{[d]}}_{\rm UV \ cut-off \ scale} \text{ dimension of the operator}$$

+ Quantum gravity conjectures: gravity violates all global symmetries

Peccei-Quinn breaking operators are generated at UV scale

$$\Delta \mathcal{L}_{\mathrm{UV}} \sim \frac{1}{\Lambda_{\mathrm{UV}}^{d-4}} \mathcal{O}^{[d]}$$

They generate an extra potential for the axion

$$\Delta V_{\rm UV}(\theta_{\rm eff}) \sim \Lambda_{\rm UV}^4 \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^d$$

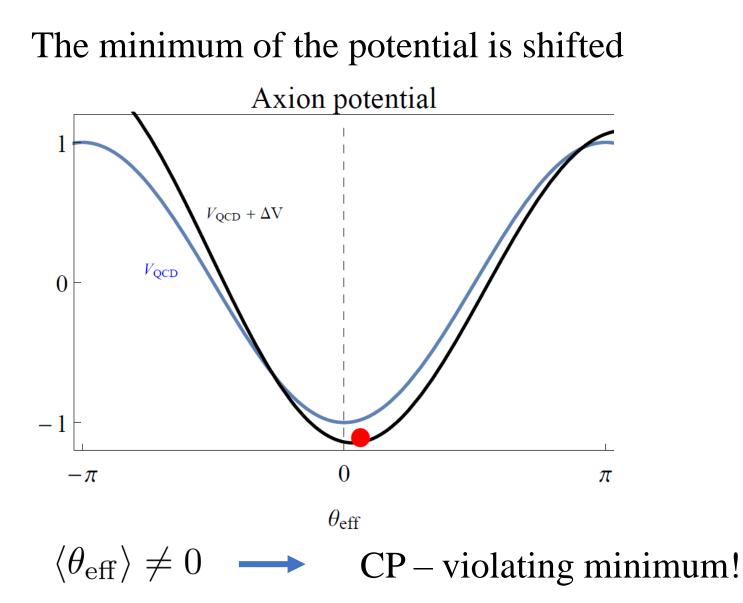
Peccei-Quinn breaking operators are generated at UV scale

$$\Delta \mathcal{L}_{\rm UV} = \frac{\lambda_n |\Phi|^{2m} e^{-i\delta_n \Phi^n}}{\Lambda_{\rm UV}^{d-4}} + h.c.$$

They generate an extra potential for the axion

$$\Phi(x) \simeq f_a e^{ia(x)/f_a}$$

$$\Delta V_{\rm UV} \approx \lambda_n \Lambda_{\rm UV}^4 \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^d \cos\left(\frac{na}{f_a} - \delta_n\right)$$



We solve the Strong CP problem only if

 $\langle \theta_{\rm eff} \rangle < 10^{-10}$ (neutron EDM)

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

UV physics

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$
 UV physics QCD

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

For physically well motivated scales

$$f_a \sim 10^{11} \text{ GeV}$$

 $\Lambda_{\rm UV} \sim M_{\rm Pl}$

PQ must be **preserved** up to operators of dimension $d \ge 12$ (high-quality symmetry)

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_{Q}$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	$\mathcal N$	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

New dark SU(N) gauge group

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R $\mathcal{C}^{1,2,3}$	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

New dark SU(N) gauge group

+

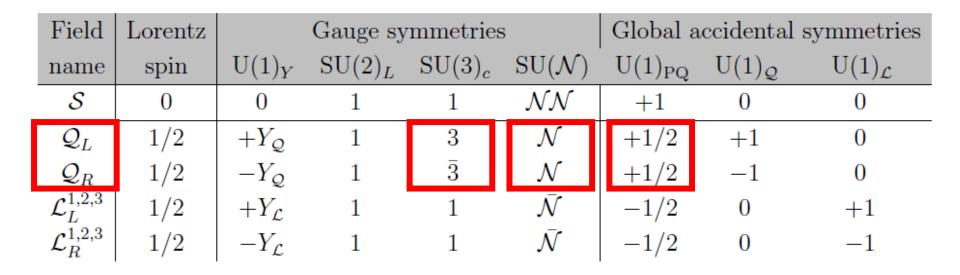
A new scalar field in the symmetric representation of SU(N)

Field	Lorentz		Gauge sy	mmetries	Global a	ccidental	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	$\mathcal N$	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

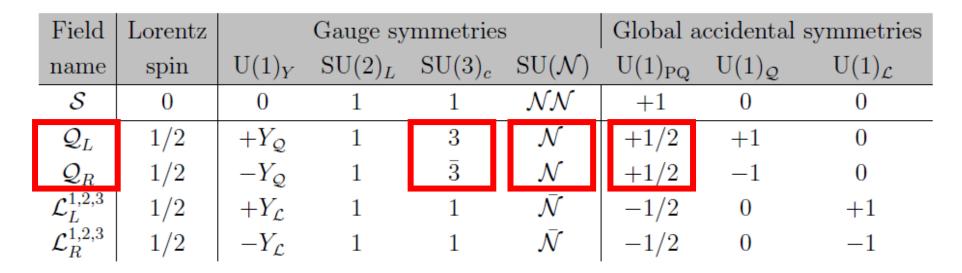
New dark SU(N) gauge group

+ A new scalar field in the symmetric representation of SU(N)

Accidental U(1) global symmetry at the renormalizable level



A new colored fermion provides the QCD anomaly



A new colored fermion provides the QCD anomaly We can identify U(1) as the Peccei-Quinn symmetry

	Field	Lorentz		Gauge sy	mmetries	3	Global a	$\operatorname{ccidental}$	symmetries
	name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
-	S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
-	\mathcal{Q}_L	1/2	$+Y_{Q}$	1	3	\mathcal{N}	+1/2	+1	0
_	\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
ſ	$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
L	$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

A new colored fermion provides the QCD anomaly

We can identify U(1) as the Peccei-Quinn symmetry

We introduce color-singlet fermions to cancel gauge anomalies

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_{\mathcal{Q}}$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

SSB:
$$S(x) = \left(\sqrt{N/2}f_a + \cdots\right) e^{ia(x)/f_a} \longrightarrow SU(N) \otimes U(1)_{PQ} \to SO(N)$$

	Field	Lorentz		Gauge sy	mmetries	;	Global a	$\operatorname{ccidental}$	symmetries
	name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
	${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
·	\mathcal{Q}_L	1/2	$+Y_{\mathcal{Q}}$	1	3	\mathcal{N}	+1/2	+1	0
	\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
	$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
	$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

<u>SSB</u>: $S(x) = \left(\sqrt{N/2}f_a + \cdots\right) e^{ia(x)/f_a} \longrightarrow SU(N) \otimes U(1)_{PQ} \to SO(N)$

SO(N) *confinement*: 2 energy scales in the model \longrightarrow

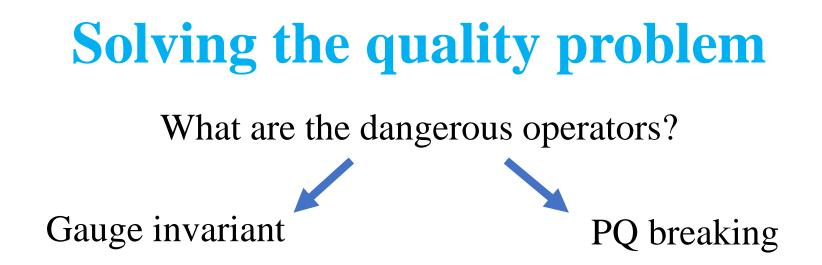
$$\Lambda_{\rm SO} \ll f_a$$

	Field	Lorentz		Gauge sy	mmetries	3	Global a	$\operatorname{ccidental}$	symmetries
	name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
-	S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
-	\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
	\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
	$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
	$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

SSB:
$$S(x) = \left(\sqrt{N/2}f_a + \cdots\right) e^{ia(x)/f_a} \longrightarrow SU(N) \otimes U(1)_{PQ} \to SO(N)$$

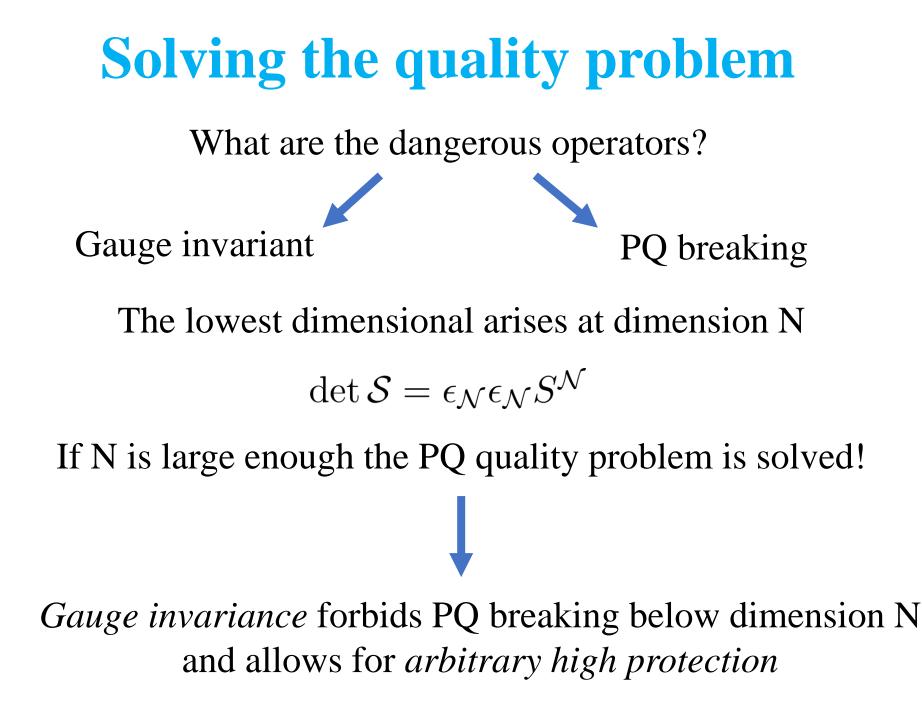
SO(N) confinement: 2 energy scales in the model $\longrightarrow \Lambda_{SO} \ll f_a$

Extra *accidental* Z_2 symmetry preserved by SO(N) dynamics



The lowest dimensional gives the strongest condition

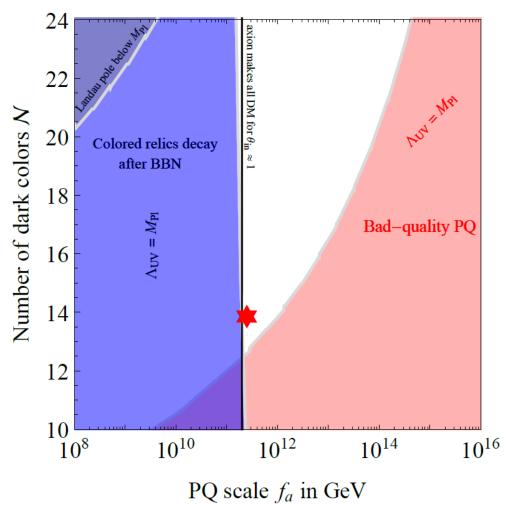
$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$



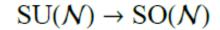
Parameter space

- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale

• We need $\mathcal{N} > 12$ if $\Lambda_{\rm UV} = M_{\rm Pl}$

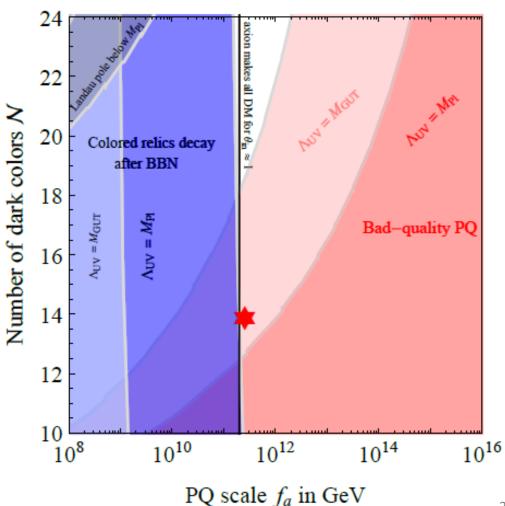


Parameter space



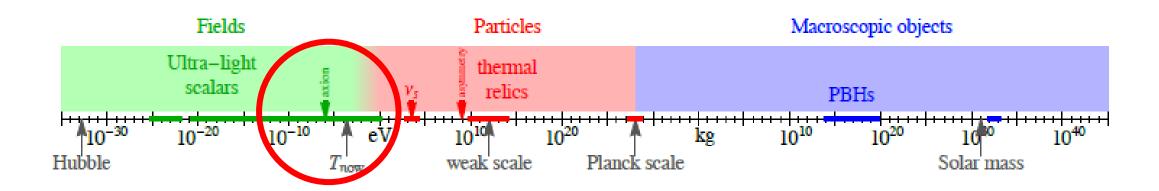
- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale

- We need $\mathcal{N} > 12$ if $\Lambda_{\mathrm{UV}} = M_{\mathrm{Pl}}$
- Larger values for smaller cut-off scales



Axion Dark Matter

The mass range of DM candidates spans over 80 order of magnitudes



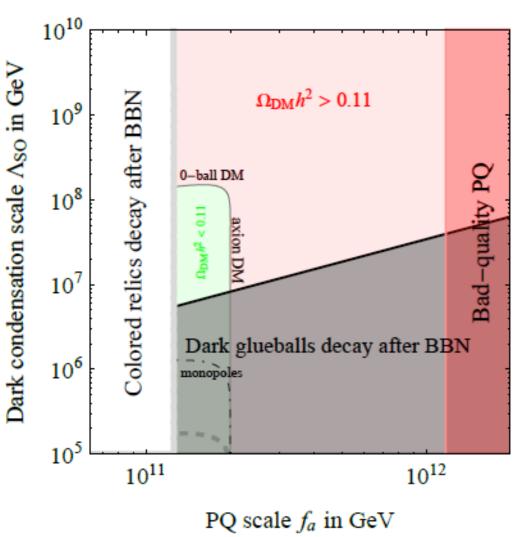
Axions are excellent ultra-light DM candidates

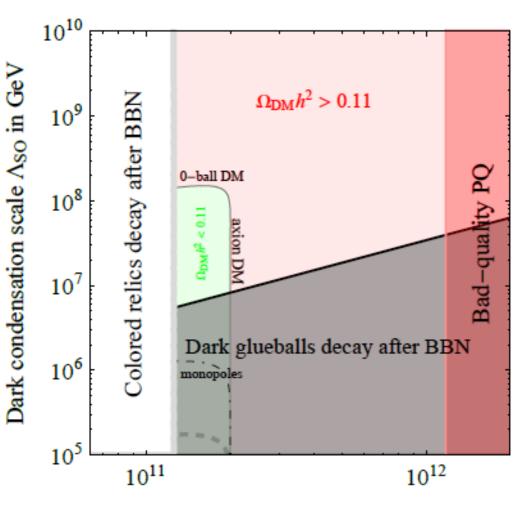
They are produced through vacuum misalignment mechanism

PQ broken after inflation

<u>Axion DM</u> + Composite SO(N) bound states

- They emerge after SO(N) confinement
- Most of them just decay...
- ...but the Z_2 odd are stable DM candidates!





PQ broken after inflation

 Z_2 : reflection in group space along an arbitrary color direction

$$\mathcal{A}_{IJ} \to (-1)^{\delta_{1I} + \delta_{1J}} \mathcal{A}_{IJ}$$

 $\mathcal{L}^{I} \to (-1)^{\delta_{1I}} \mathcal{L}$

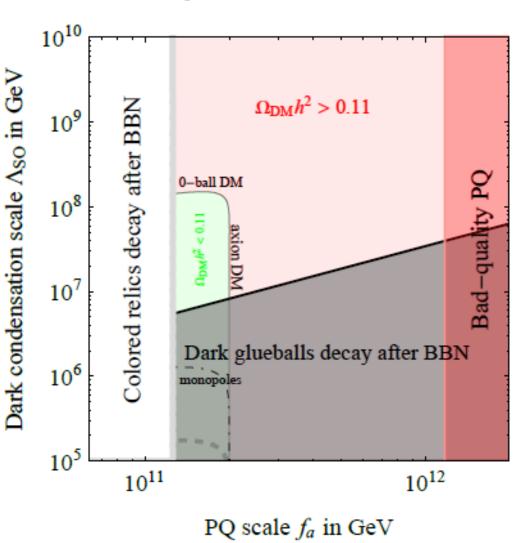
$\text{if }\mathcal{N}\text{ is odd}$	$\epsilon_{\mathcal{N}}\mathcal{A}^{(\mathcal{N}-1)/2}\mathcal{L}$
if \mathcal{N} is even	

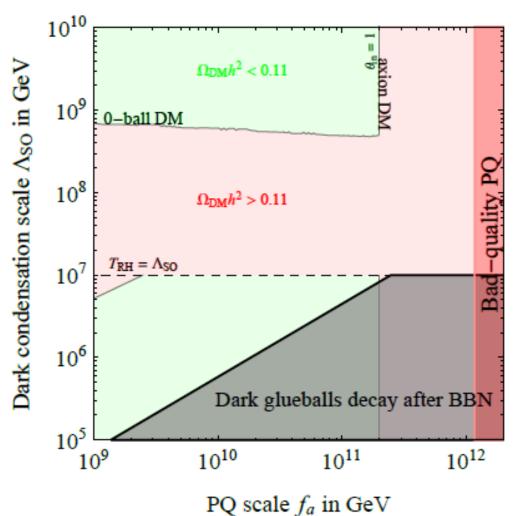
PQ scale f_a in GeV

PQ broken after inflation

<u>Axion DM</u> + <u>Composite SO(N) bound states</u>

- They emerge after SO(N) confinement
- Most of them just decay...
- ...but the Z_2 odd are stable DM candidates!
- Their mass is $\sim \Lambda_{\rm SO}$
- Thermally produced (freeze-out/freeze-in)





PQ broken before inflation

<u>Axion DM</u> + <u>Composite SO(N) bound states</u>

- They emerge after SO(N) confinement
- Most of them just decay...
- ...but the Z_2 odd are stable DM candidates!
- Their mass is $\sim \Lambda_{\rm SO}$
- Thermally produced (freeze-out/freeze-in)

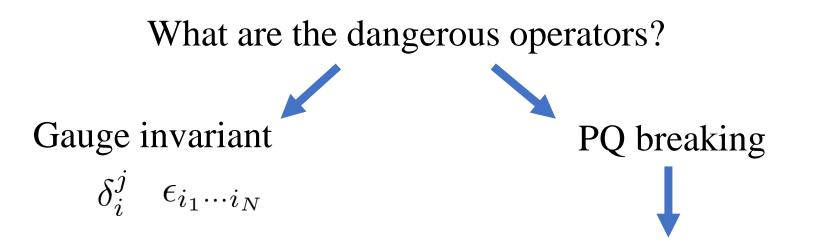
The Peccei-Quinn solution has a problem of UV sensitivity

Introducing a new gauge symmetry we can build a consistent model

We can solve the quality problem and get multicomponent DM

Backup slides

N-ality rule (1)



PQ charge is proportional to *N-ality*

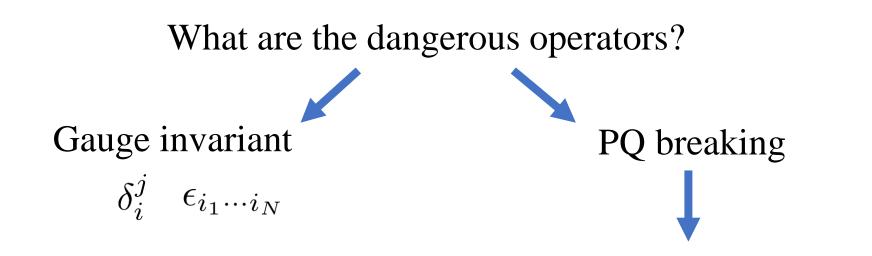
$$\mathrm{PQ}[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$$

N-ality rule (2)

Field	Lorentz	Gauge symmetries				Global accidental symmetries		
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

 $PQ[S_{ij}] = \frac{1}{2} \times 2 = 1$ $PQ[Q_i] = \frac{1}{2} \times 1 = \frac{1}{2}$ $PQ[\mathcal{L}^i] = \frac{1}{2} \times (-1) = -\frac{1}{2}$

N-ality rule (3)



PQ breaking = N-ality breaking \checkmark PQ charge is proportional to *N-ality* $\#_{\{i\}} - \#^{\{j\}} \neq 0$ $PQ[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$

PQ is only broken by operators containing one $\epsilon_{i_1\cdots i_N}$ tensor

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_{yuk} - V(\mathcal{S})$$

$$\mathcal{L}_{yuk} = y_{\mathcal{Q}} \mathcal{Q}_L \mathcal{S}^{\dagger} \mathcal{Q}_R + y_{\mathcal{L}}^{ij} \mathcal{L}_L^i \mathcal{S} \mathcal{L}_R^j + h.c.$$

$$U(1)_{\mathcal{Q}} \qquad \text{if } Y_{\mathcal{L}} \neq 0 \qquad U(1)_{\mathcal{L}}$$

$$\mathcal{Q}_{L(R)} \rightarrow e^{(-)i\alpha} \mathcal{Q}_{L(R)} \qquad \qquad \mathcal{L}_{L(R)} \rightarrow e^{(-)i\beta} \mathcal{L}_{L(R)}$$

 $V(S) = M_{\mathcal{S}}^2 Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right] + \lambda_{\mathcal{S}} Tr \left[(\mathcal{S}^{\dagger} \mathcal{S})^2 \right] + \lambda_{\mathcal{S}}' Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \mathcal{S}^{\dagger} \mathcal{S} \right] - \lambda_{H\mathcal{S}} (H^{\dagger} H) Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right]$

Lagrangian and symmetries

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm yuk} - V(\mathcal{S})$$

$$\mathcal{L}_{\text{yuk}} = y_{\mathcal{Q}} \mathcal{Q}_L \mathcal{S}^{\dagger} \mathcal{Q}_R + y_{\mathcal{L}}^{ij} \mathcal{L}_L^i \mathcal{S} \mathcal{L}_R^j + h.c.$$

 $U(1)_{\mathcal{Q}}$

$$\text{if } Y_{\mathcal{L}} = 0 \qquad \qquad Z_2$$

No distinction between L and R

 $\mathcal{Q}_{L(R)} \to e^{(-)i\alpha} \mathcal{Q}_{L(R)}$

$$\mathcal{L}
ightarrow -\mathcal{L}$$

 $V(S) = M_{\mathcal{S}}^2 Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right] + \lambda_{\mathcal{S}} Tr \left[(\mathcal{S}^{\dagger} \mathcal{S})^2 \right] + \lambda_{\mathcal{S}}' Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \mathcal{S}^{\dagger} \mathcal{S} \right] - \lambda_{H\mathcal{S}} (H^{\dagger} H) Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right]$

U-parity

SU(N) and SO(N) are invariant under a discrete symmetry: U-parity

$$\mathcal{S}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{S}_{ij} \qquad \mathcal{A}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{A}_{ij} \qquad \mathcal{Q}_i \to (-1)^{\delta_{1i}} \mathcal{Q}_i$$

Reflection in group space along an arbitrary direction

We can build gauge-invariant bound states odd under U-parity

$$\epsilon_{i_1\cdots i_{\mathcal{N}}}\mathcal{A}_{i_1i_2}\cdots\mathcal{A}_{i_{\mathcal{N}-1}i_{\mathcal{N}}}$$
Stable DM candidates

Stable SO(N) bound states

Stable states because of O-parity or dark lepton number

if
$$Y_{\mathcal{L}} \neq 0$$
if $Y_{\mathcal{L}} = 0$ if N is odd $\epsilon_N \mathcal{A}^{(N-1)/2} \mathcal{L}$ and \mathcal{LL} $\epsilon_N \mathcal{A}^{(N-1)/2} \mathcal{L}$.if N is even $\epsilon_N \mathcal{A}^{N/2}$ and \mathcal{LL} $\epsilon_N \mathcal{A}^{N/2}$

To avoid charged relics we must fix

$$Y_{\mathcal{L}} = 0$$

Decay of colored relics

Gauge invariance allows dimension-6 operators

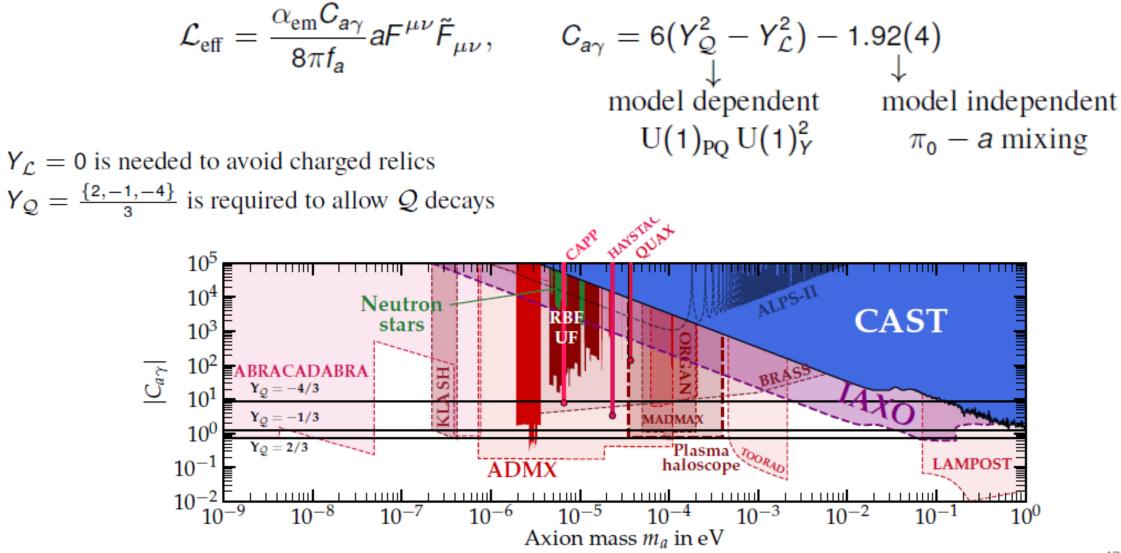
$$(q_R \mathcal{Q})(e_R \mathcal{L})$$
 $(q_R \mathcal{Q})(q'_R \mathcal{L})$

They are allowed for $Y_Q \pm Y_L = \{-1/3, 2/3, -4/3\}$

We assume that $m_Q > m_L$ We require that decays of colored fermions occur before BBN

$$\Gamma_{\mathcal{Q}} \simeq \frac{1}{13 \text{ sec}} \left(\frac{m_{\mathcal{Q}}}{2 \times 10^{11} \text{ GeV}} \right)^5 \left(\frac{M_{\text{Pl}}}{\Lambda_{\text{UV}}} \right)^4 \qquad f_a > \frac{1}{y_{\mathcal{Q}}} \sqrt{\frac{10}{\mathcal{N}}} \left(\frac{\Lambda_{\text{UV}}}{M_{\text{Pl}}} \right)^{4/5} \times 10^{11} \text{ GeV}$$

Axion photon coupling



Thermal production of composite DM

Efficient dilution mechanisms

Post-inflationary

Freeze-out production

+ Early matter domination and late decays of SO(N) glue-balls

Huge entropy injection/DM dilution

Pre-inflationary

Freeze-in production

Production suppressed by $e^{-M_{\rm BS}/T_{\rm RH}}$

Scalar in antisymmetric of SU(N)

Same idea but SU(N) is broken to Sp(N) PQ is broken by dimension N/2 operator $\epsilon_{N/2} S^{N/2}$ DM: axions (+ mesons $\mathcal{L}\gamma_N \mathcal{L}$)

