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❖ massive inflaton

❖ moduli fields

❖ (non)-thermal relics
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Matter: sources of energetic particles

room for modifications

e.g. Matter

❖ room for modification of thermal history prior to BBN



Evolution of a universe with matter
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Instantaneous

Thermalization
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❖ captures: modified Hubble rate - entropy production  →  FO - FI - ….

❖ misses: physics of particles with p > T

Boltzmann equation:❖ matter universe moves toward MD eraω = 0 →

[Maldonado & Unwin 1902.10746]
[Beranal et al 1906.04183]
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❖ look at an instant

❖ consider a single decaying matter particle

Instantaneous thermalization

3

E 
= 

M

p 
= 

M
/2

p
Equilibrio!

particle 
production

distribute 
energy

DM

DM

p 
= 

T

N
 =

 M
/T

[1
50

6.
07

53
2]

T

ρR

ρR

ρR

ρR

ρM

ρM

ρM

aM aRaNA a

RD′ MDNAMDA RD

a ∝ t2/3 T ∝ a−1
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T ~ mDM

Warner Bros.
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❖ look at e.g. DM freeze-in



Instantaneous thermalization: what we miss
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DMDM
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mDM > T available

❖ particles as heavy as M/2 produced

❖ production continues up to RH

❖ smaller dilution
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❖ need particle interactions

❖ look at a Hubble era → constant T

❖ consider a single decaying matter particle
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Thermalization in gauge theory
❖ TB particles provide large scattering target density

❖ suppressed except forward t/u-channel gauge mediated process

≣(1)

Δp ∼ αT ∼ mthσ ∼ α2/m2
th = α/T2 dp/dt ∼ α3/2T2

Δp ∼ p/2σ ∼ α3/m2
th = α2/T2 dp/dt ∼ α2pT  particle 

production

[Davidson & Sarkar 0009078 - Drees & Allahverdi 0205246]
[Kurkela & Moore 1107.5050 - Kurkela & Lu 1405.6318]
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❖ collinearity of the 2→3 processes is boon & bane

❖ extensively studied for QCD→ extend to include the chiral SM particles
⊃ DGLAP splitting functions

Thermalization & the  LPM effect
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[edited-hep-ph/0408347]

first splitting

second splitting

Destructive 
interference

❖ the vacuum rate is dressed by a suppression factor

yp

(1− y)pp

p, s = ℓL

p − k, s′ ′ = ℓL

k, s′ = W/γ

soft 2→2 
scattering

[AMY hep-ph/0209353 - Arnold et al 0804.3359/
JHEP06(2002)030 / JHEP11(2001)057]



Boltzmann equation
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❖  given by detailed balance of species s of energy pñ(p) ≡ dn(p)/dp
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❖ how often a species is produced

Balance:

[p, p + 𝛿p]



❖  given by detailed balance of species s of energy pñ(p) ≡ dn(p)/dp

Boltzmann equation
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❖ how often a species is produced

❖ how often it “splits away”

Balance:
. .

 .

ℓL, qR

qL
B
ℓR
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❖ thermal. for a single species e.g. gluons → previously in 
[Harigaya et al JHEP 05 (2014) 006 - 
Phys.Rev.D 89 (2014) 8 - Drees & BN 

JCAP 10 (2021) 009 ]



Spectra of SM particles
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❖ disregard Higgs →

❖ go dimensionless:    and 

❖ SU(3) - SU(2) - U(1)  A        FL      FR

x = p/T

p



Spectra of SM particles

7

❖ disregard Higgs →

❖ go dimensionless:    and 

❖ SU(3) - SU(2) - U(1)  A        FL      FR

x = p/T

❖ semi-thermal and non-thermal production

❖ example: heavy leptophilic DM

❖ mDM → energy threshold pThr → xThr 

DM
DM



Summary and outlook

❖ non-equilibrium matter components abundant in cosmology

❖ matter particles decay to radiation with p >> T → thermalization

❖ thermalization proceeds via LPM suppressed splittings 2 →3

❖ coupled set of integral equations needs to be solved numerically

❖ plasma flows towards a QGP BUT spectra show Large deviations

❖ spectra can be used for various calculations: DM + RH neutrinos +…

❖ looking ahead: showering matter decays - include Higgs & SUSY particles in 
thermalization cascade



Gauge boson injection



M/T and Scaling behavior



Generic branching — linearity of Boltzmann system



LPM suppressed rates
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CF = (N2 − 1)/2N, CA = N, dF = N, dA = N2 − 1

Cs
F = Y2

s , CA = 0, dF = 1, dA = 1while for U(1)
for SU(N)
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a ∝ exp(HIt) T " 0

ρR " 0ρI " const

a ∝ t2/3 T ∝ a−3/8
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Evolution after infation
❖ inflationary MD era reheats to an RD universe Boltzmann equation:

dρM

dt
+ 3HρM = − ΓMρM
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+ 4HρR = + ΓMρM
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Instantaneous

Thermalization


