U(1) gauge field & charged particles in axion inflation

Tomohiro Fujita (Waseda Inst. Adv. Study & RESCEU Tokyo U.)

早稲田大学高等研究所 Waseda Institute for Advanced Study

2204.01180 and 2206.12218 with Kume (RESCEU), Mukaida (KEK), Tada (Nagoya)

26th. Jul. 2022@PASCOS2022

Plan of Talk

- 1. Motivation
- 2. Review the case without ψ
- 3. Solve the system of A & ψ
- 4. Results
- 5. Summary

Setup inflaton ϕ – photon A_{μ} – fermion ψ coupled system

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} FF - \frac{\alpha}{4f} \phi F\tilde{F} + i\bar{\psi} \not{D} \psi$$

Axionic inflaton

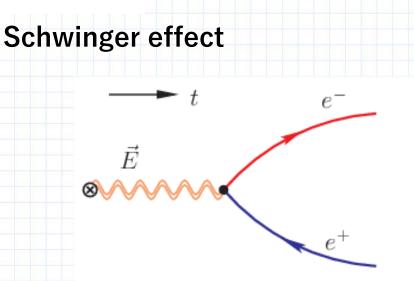
U(1) gauge field coupled to ϕ

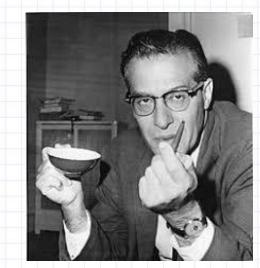
Charged fermion

Setup inflaton ϕ – photon A_{μ} – fermion ψ coupled system

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} FF - \frac{\alpha}{4f} \phi F\tilde{F} + i\bar{\psi} \not{D} \psi$$

Axionic inflatonU(1) gauge fieldChargedcoupled to ϕ fermion


Motivations


① <u>Particle Physics</u>: Shift symmetry of $\phi \implies$ Reheating requires coupling

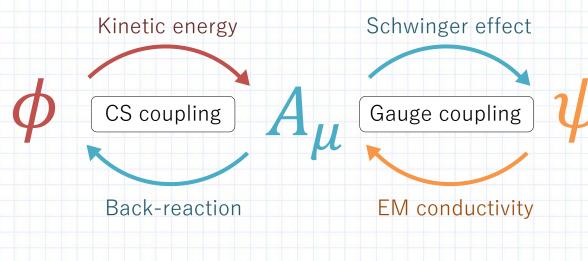
2 <u>Phenomenology</u>: Helical B Baryogenesis & Magnetogenesis

③ <u>Formal interest</u>: Strong E → Schwinger effect

Motivation

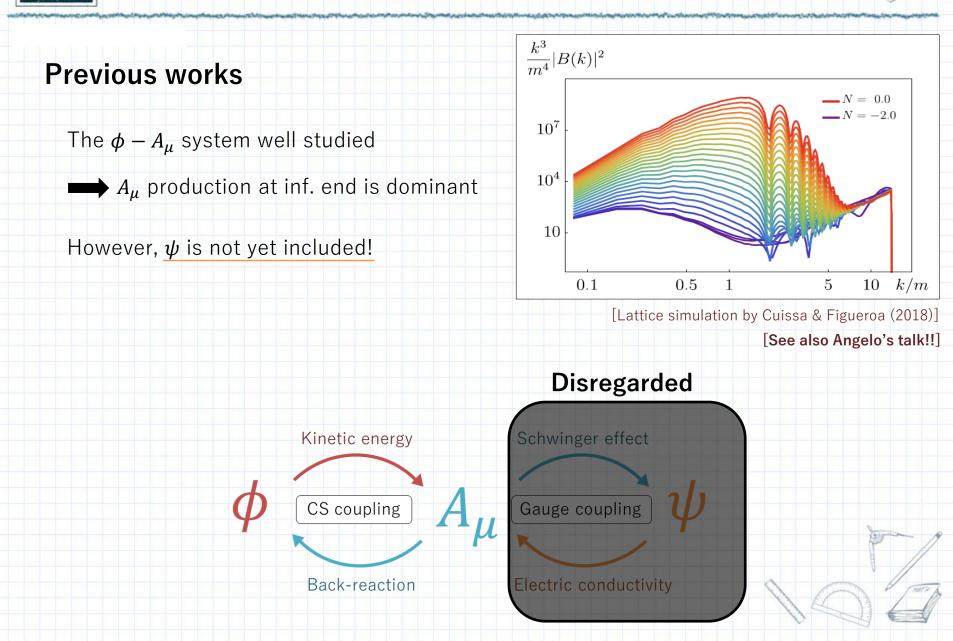
Julian Schwinger(1918~1994)

- Sufficiently strong ($eE > m^2$) electric field causes a pair production of charged particles. It's a non-perturbative process in QED.
- Not yet detected. It may be observed by EBI or X-FEL etc...
 G. V. Dunne, Eur. Phys. J. D55, 327-340
 A. Ringwald, Phys. Lett. B510, 107-116
- In the early universe, however, It may have played an important role.

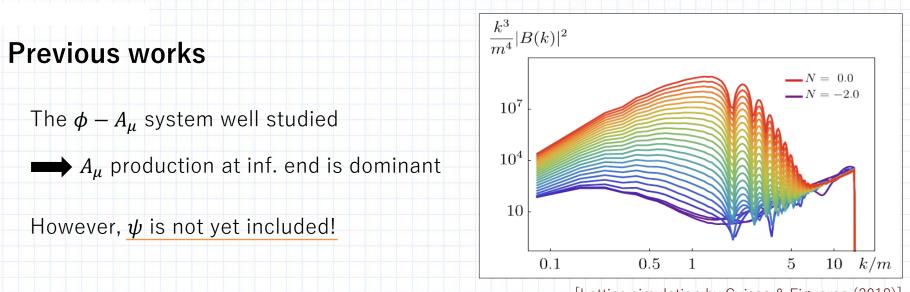


Setup inflaton ϕ – photon A_{μ} – fermion ψ coupled system

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} FF - \frac{\alpha}{4f} \phi F\tilde{F} + i\bar{\psi} \not{D} \psi$$


Axionic inflatonU(1) gauge fieldChargedcoupled to ϕ fermion

Interactions



[Garretson+(1992), Field&Carroll(2000), Anber&Sorbo(2006) Durrer+(2011), Fujita+(2015), Adshead+(2016),…]

[Lattice simulation by Cuissa & Figueroa (2018)]

[See also Angelo's talk!!]

Difficulty

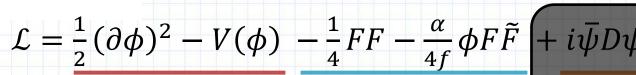
Non-linear & non-perturbative Dynamics

 $A(k), \psi(k)$: different k-modes are coupled

System is close to neither free mode nor thermal equilibrium

We need a new approach to solve it

[See also Domcke, Ema, Mukaida(2019); Gorbar, Schmitz, Sobol, Vilchinskii(2021)]


Plan of Talk

- 1. Motivation
- 2. Review the case without ψ
- 3. Solve the system of A & ψ
- 4. Results
- 5. Summary

Review no-charged-particle case

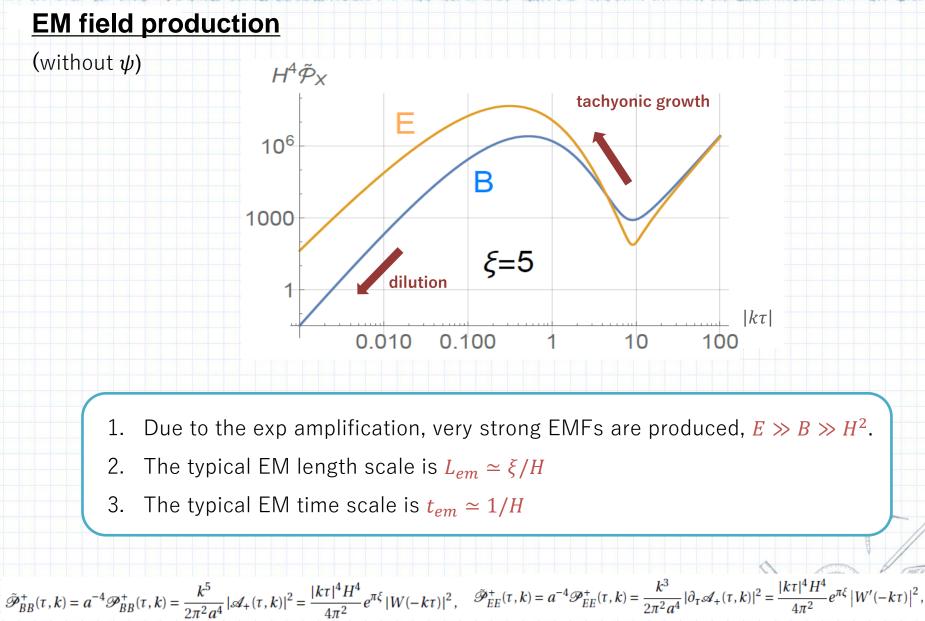
Axionic inflaton U(1) gauge field

coupled to ϕ

Charged fermion

Assumption: the inflaton rolls at a constant velocity $\xi \equiv \frac{\alpha \phi}{2fH}$

The EoM for the gauge field mode function \mathcal{A}_+ is given by

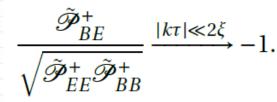

$$\partial_{\tau}^2 + k^2 \pm 2k \frac{\xi}{\tau} \mathcal{A}_{\pm}(\tau, k) = 0$$

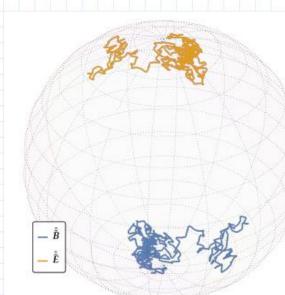
Either \pm mode is amplified by the tachyonic instability.

In the slow-roll phase, an analytic solution is available.

If
$$\xi \equiv \frac{\alpha \dot{\phi}}{2fH} = const. > 0$$
 \longrightarrow $\mathcal{A}_{+} = \frac{1}{\sqrt{2k}} e^{\pi \xi/2} W_{-i\xi,1/2} (2ik\tau)$

2 Review no-charged-particle case



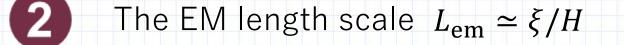


(without ψ)

Since the parity is fully violated, EM fields take an **anti-parallel** configuration.

Evolution of $\widehat{E} \cdot \widehat{B}$ for 0.5 e-folds

- 1. Due to the exp amplification, very strong EMFs are produced, $E \gg B \gg H^2$.
- 2. The typical EM length scale is $L_{em} \simeq \xi/H$
- 3. The typical EM time scale is $t_{em} \simeq 1/H$
- 4. E and B are anti-parallel, $\widehat{E} \cdot \widehat{B} = -1$


 $\tilde{\mathcal{P}}_{BB}^{+}(\tau,k) = a^{-4} \mathcal{P}_{BB}^{+}(\tau,k) = \frac{k^{5}}{2\pi^{2}a^{4}} |\mathcal{A}_{+}(\tau,k)|^{2} = \frac{|k\tau|^{4}H^{4}}{4\pi^{2}} e^{\pi\xi} |W(-k\tau)|^{2}, \quad \tilde{\mathcal{P}}_{EE}^{+}(\tau,k) = a^{-4} \mathcal{P}_{EE}^{+}(\tau,k) = \frac{k^{3}}{2\pi^{2}a^{4}} |\partial_{\tau}\mathcal{A}_{+}(\tau,k)|^{2} = \frac{|k\tau|^{4}H^{4}}{4\pi^{2}} e^{\pi\xi} |W'(-k\tau)|^{2},$

4 properties in the no charged particle case

Strong EMFs are produced: $E, B \gg H^2$

EMFs are anti-parallel: $\widehat{E} \cdot \widehat{B} = -1$

Plan of Talk

- 1. Motivation
- 2. Review the case without ψ
- 3. Solve the system of A & ψ
- 4. Results
- 5. Summary

Solve the system of A and ψ

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} FF - \frac{\alpha}{4f} \phi F\tilde{F} + i\bar{\psi}D\psi$$

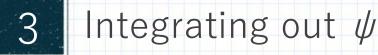
Axionic inflaton U(1) gauge field Charged fermion

Assumption: the inflaton rolls at a constant velocity $\xi \equiv \frac{\alpha \phi}{2fH}$

The EoMs for the gauge field and fermion are **coupled** and **non-linear**

$$\begin{bmatrix} \hat{\gamma}^{\mu} (\partial_{\mu} + igQ\hat{A}_{\mu}) + \frac{3}{2}aH\hat{\gamma}^{0} \end{bmatrix} \hat{\psi} = 0$$

$$\partial_{\tau}^{2}A_{i} - \partial_{j}^{2}A_{i} + \frac{2\xi}{\tau}\epsilon_{ijl}\partial_{j}A_{l} = a^{2}eJ_{i} \qquad J^{\mu} = \bar{\psi}\gamma^{\mu}\psi$$


We cannot exactly solve them... Then, we introduce two prescriptions

Integrating out ψ : Reduce the coupled EoMs into a single non-linear eq.

Mean-field approx: linear eq. for perturbation and consistency eq.

[Domcke&Mukaida(2018)]

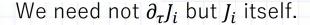
Remember the properties of the produced EMFs

1
$$E, B \gg H^2$$
 2 $L_{\rm em} \simeq \xi/H$ **3** $\tau_{\rm em} \simeq 1/H$

Typical momentum of the Schwinger produced fermion is $p_{\psi} \simeq \sqrt{eE}$

Thus, a hierarchy of scales exists

$$L_{\psi} \sim t_{\psi} \sim (eE)^{-1/2} \ll L_{\rm em} \sim t_{\rm em} \sim H^{-1}$$


For fermions, EMFs look static and homogeneous, \widetilde{E} , $\widetilde{B} \simeq const$.

Schwinger current induced by static, homogeneous & anti-parallel EMFs is known:

$$\partial_{\tau}(a^2 e J_i) = \frac{e^3 B E_i}{2\pi^2} \operatorname{coth}\left(\frac{\pi B}{E}\right).$$

NB; this current satisfies the chiral anomaly equation. Assumption: the fermion's mass is negligible, $m_{\eta\eta} \ll$

Assumption: the physical EMFs are static, $E, B \propto a^2$, for $t \gtrsim H^{-1}$

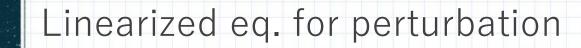
Since $t_{em} \simeq H^{-1}$, this expression may not be very accurate. But on average, E and B amplitudes should be constant, because the energy injection from the insflaton is constant, $\xi = const$.

We obtain a single non-linear EoM for A!!

$$\partial_{\tau}^{2}A_{i} - \partial_{j}^{2}A_{i} + \frac{2\xi}{\tau}\epsilon_{ijl}\partial_{j}A_{l} = a^{2}eJ_{i}$$

Mean-field approximation

How to solve a full non-linear equation??


$$\partial_{\tau}^2 A_i - \partial_j^2 A_i + \frac{2\xi}{\tau} \epsilon_{ijl} \partial_j A_l = a^2 e J_i \qquad e J_i \simeq \frac{e^3 B E_i}{6\pi^2 a^3 H} \operatorname{coth}\left(\frac{\pi B}{E}\right)$$

We introduce mean-field approx. and split EMFs into a mean and a perturbation

$$E(\tau, x) \simeq E_0 + \delta E(\tau, x), \qquad B(\tau, x) \simeq B_0 + \delta B(\tau, x).$$

The Schwinger current is accordingly decomposed. $(\hat{E}_0 \cdot \hat{B}_0 = -1, \text{but } \delta E \cdot \delta B \neq -1)$

$$\begin{aligned} a^{2}eJ &= a^{2}e(J_{0} + \delta J), \\ a^{2}eJ_{0} &= \frac{e^{3}B_{0}E_{0}}{6\pi^{2}aH} \operatorname{coth}\left(\frac{\pi B_{0}}{E_{0}}\right)e_{z}, \\ a^{2}e\delta J &= \frac{e^{3}}{6\pi^{2}aH} \left[\left(\frac{B_{0}^{3}\delta E_{z} - E_{0}^{3}\delta B_{z}}{E_{0}^{2} + B_{0}^{2}} \operatorname{coth}\left(\frac{\pi B_{0}}{E_{0}}\right) + (B_{0}\delta E_{z} + E_{0}\delta B_{z})\frac{\pi B_{0}}{E_{0}}\operatorname{csch}^{2}\left(\frac{\pi B_{0}}{E_{0}}\right) \right]e_{z} \\ &+ \frac{E_{0}^{2}B_{0}\delta E - B_{0}^{2}E_{0}\delta B}{E_{0}^{2} + B_{0}^{2}} \operatorname{coth}\left(\frac{\pi B_{0}}{E_{0}}\right) \right]. \end{aligned}$$

The EoM for the perturbation is

$$\left[\partial_z^2 - \frac{\Sigma}{z}\partial_z + 1 - \frac{2\xi_{\text{eff}}}{z}\right]\mathscr{A}_+^{(\sigma)} = 0$$

with the electric and magnetic conductivity:

$$\begin{split} \Sigma &\equiv \Sigma_E + \Sigma_{E'} \sin^2 \theta_k, \qquad \xi_{\text{eff}} \equiv \xi - \frac{1}{2} \left(\Sigma_B + \Sigma_{B'} \sin^2 \theta_k \right) \qquad \hat{E}_0 \cdot e^{\pm}(\hat{k}) = -\sin\theta_k / \sqrt{2}. \\ \Sigma_E &\equiv \frac{e^3 B_0}{6\pi^2 a^2 H^2} \left(\frac{E_0^2}{E_0^2 + B_0^2} \coth\left(\frac{\pi B_0}{E_0}\right) \right), \qquad \Sigma_{E'} &\equiv \frac{e^3 B_0}{12\pi^2 a^2 H^2} \left(\frac{B_0^2}{E_0^2 + B_0^2} \coth\left(\frac{\pi B_0}{E_0}\right) + \frac{\pi B_0}{E_0} \operatorname{csch}^2 \left(\frac{\pi B_0}{E_0}\right) \right) \\ \Sigma_B &\equiv \frac{e^3 E_0}{6\pi^2 a^2 H^2} \left(\frac{B_0^2}{E_0^2 + B_0^2} \coth\left(\frac{\pi B_0}{E_0}\right) \right), \qquad \Sigma_{B'} &\equiv \frac{e^3 E_0}{12\pi^2 a^2 H^2} \left(\frac{E_0^2}{E_0^2 + B_0^2} \coth\left(\frac{\pi B_0}{E_0}\right) - \frac{\pi B_0}{E_0} \operatorname{csch}^2 \left(\frac{\pi B_0}{E_0}\right) \right) \end{split}$$

Fortunately, an analytic solution is available!

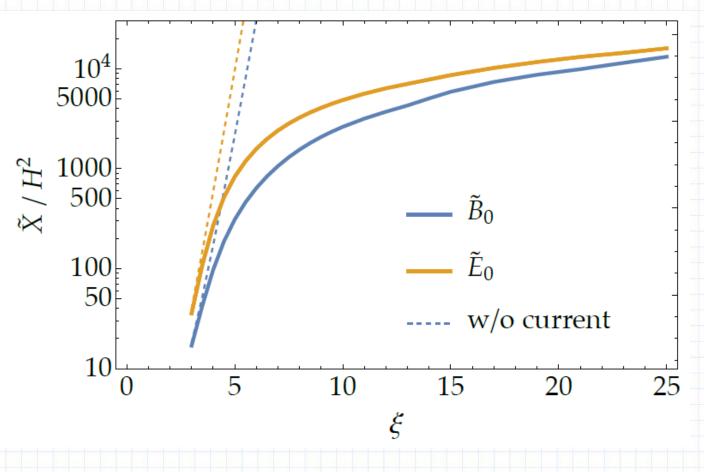
$$\mathscr{A}_{+}^{(\sigma)}(\tau, \mathbf{k}) = \frac{1}{\sqrt{2k}} e^{\pi\xi_{\rm eff}/2} z^{\Sigma/2} \Big[c_1 W_{-i\xi_{\rm eff},(\Sigma+1)/2}(-2iz) + c_2 M_{-i\xi_{\rm eff},(\Sigma+1)/2}(-2iz) \Big],$$

We impose the consistent equation to determine the mean-field value,

Require the integration over the perturbation reproduces the mean field amplitude

Mean-field Perturbation $\tilde{E}_{0} = \sqrt{2\rho_{E}(\tilde{E}_{0},\tilde{B}_{0})}, \quad \tilde{B}_{0} = \sqrt{2\rho_{B}(\tilde{E}_{0},\tilde{B}_{0})},$ $\rho_{B} = \frac{1}{4} \int_{-1}^{1} d\cos\theta \int_{0}^{2\xi} \frac{dz}{z} \tilde{\mathscr{P}}_{BB}^{+(\sigma)}(z,\theta), \quad \rho_{E} = \frac{1}{4} \int_{-1}^{1} d\cos\theta \int_{0}^{2\xi} \frac{dz}{z} \tilde{\mathscr{P}}_{EE}^{+(\sigma)}(z,\theta),$ $\tilde{\mathscr{P}}_{BB}^{+(\sigma)}(z,\theta_{k}) = \frac{H^{4}}{4\pi^{2}} e^{\pi\xi_{eff}} z^{4+\Sigma} \left| c_{1}W_{\Sigma} + c_{2}M_{\Sigma} \right|^{2}, \quad \tilde{\mathscr{P}}_{EE}^{+(\sigma)}(z,\theta_{k}) = \frac{H^{4}}{4\pi^{2}} e^{\pi\xi_{eff}} z^{4+\Sigma} \left| c_{1}W_{\Sigma} + c_{2}M_{\Sigma} \right|^{2},$

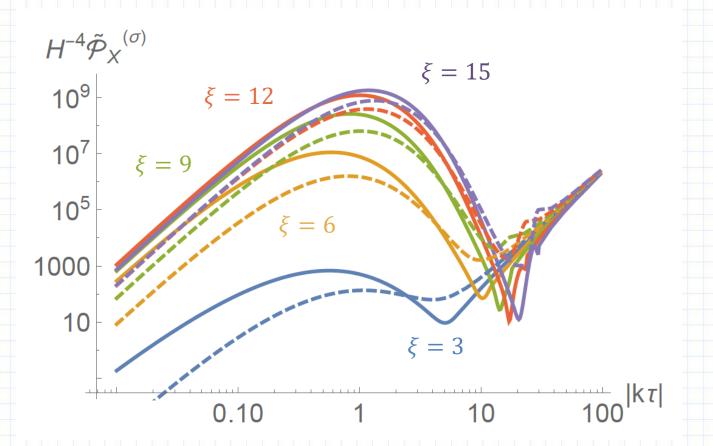
We **numerically found** the consistent amplitudes of EMFs for given ξ


NB: This matching doesn't take into account the direction of EMFs.

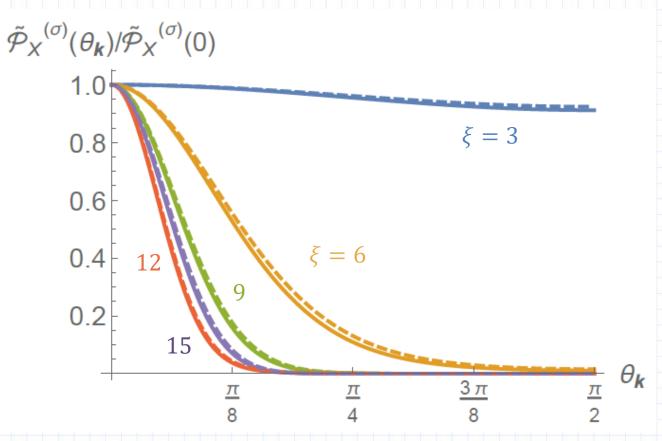
Plan of Talk

- 1. Motivation
- 2. Review the case without ψ
- 3. Solve the system of A & ψ
- 4. Results
- 5. Summary

Numerical results


Self-consistent mean-field amplitudes for EMFs

Charged fermions **drastically suppress** the EMF amplitudes.


E,B power spectra

- The spectra reach their peaks **earlier** due to the **effective friction**.
- EMFs keep the **4 properties**, which verifies our argument.

Direction dependence of the power spectra

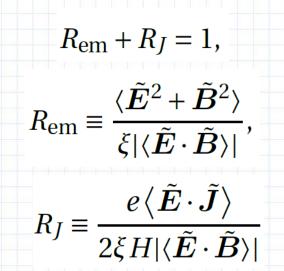
Schwinger current prevents the EMF production in similar directions

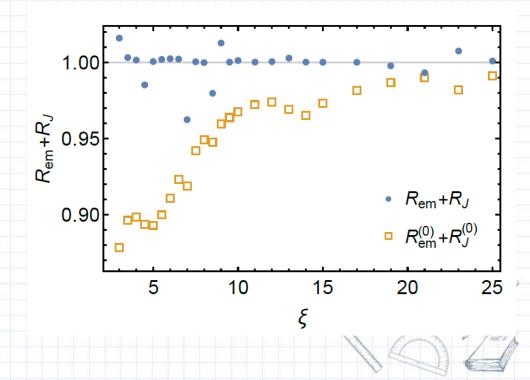
perpendicular production is favored \Rightarrow **Rotation** of the EMFs??

4 Energy conservation

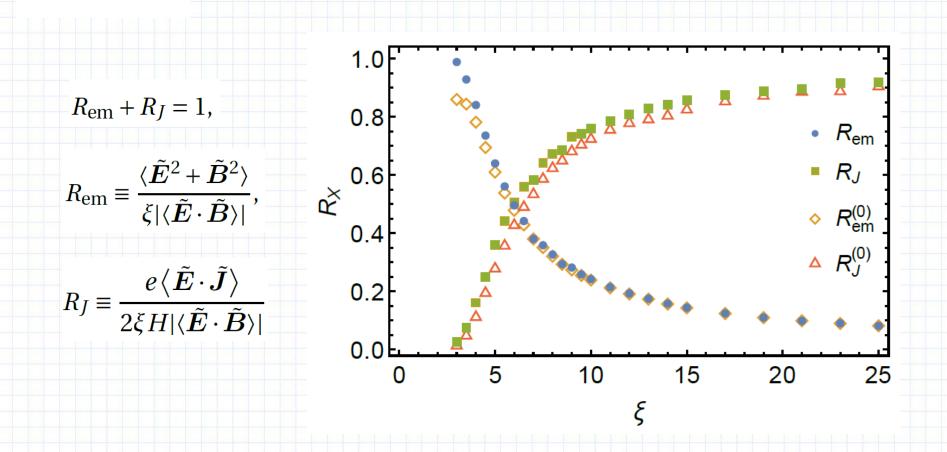
26

The energy density of EMFs evolves as


$\langle \dot{\rho}_A \rangle = -2H \langle \tilde{E}^2 + \tilde{B}^2 \rangle - 2\xi H \langle \tilde{E} \cdot \tilde{B} \rangle - e \langle \tilde{E} \cdot \tilde{J} \rangle,$


Hubble dilution

Energy injection from ϕ


produce&accelerate charged fermions

Since we consider a **static** system, $\langle \dot{\rho}_A \rangle$ should vanish and the 3 terms **should be balanced.**

Energy distribution

- For $\xi \gtrsim 10$, the energy transfer to the **fermions is dominant**.
- We don't know why... But it may have an interesting consequences.

Plan of Talk

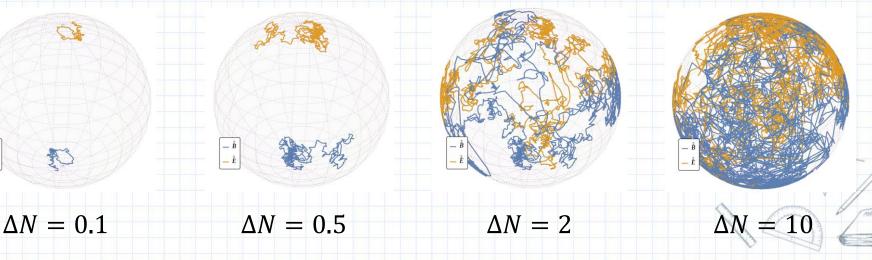
- 1. Motivation
- 2. Review the case without ψ
- 3. Solve the system of A & ψ
- 4. Results
- 5. Summary

SUMMARY

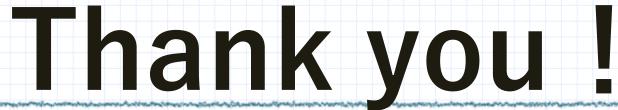
- Inflaton \$\phi\$ photon \$A_{\mu}\$ fermion \$\psi\$ coupled system is well motivated but difficult. We need a **new approach** to solve this.
- We **integrated out** ψ by using the scale separation $L_{\psi} \ll L_{em}$, and introduced **mean-field approx**. to solve non-linear eq. for A_{μ} . EM conductivities provide effective friction and reduction of ξ .
- We numerically solve the **consistent equation** to find the mean fields. The EM amplitudes are **drastically suppressed** compared to no- ψ case.
- Interestingly, the **dominant part** of the injected energy from ϕ goes to the charged fermions for $\xi \gtrsim 10$, which changes the conventional picture and may leads **new consequences**.

 \bigcirc

Future Work


30

• Relax the $\xi = const$. assumption.


Then we can explore the **inflation end** where ξ becomes maximum.

- Two unsatisfactory points of this work:
 - 1. Static EM assumption for $t \gtrsim H^{-1}$
 - 2. Consistent eq. is imposed only on the EMF amplitude not direction.
 - We cannot incorporate the **rotation** of EMFs

[TF, Mukaida, Tada, 2206.12218]

