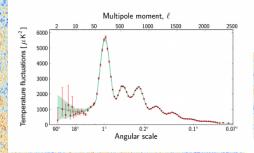
Detectable Gravitational Wave Signals from Inflationary Preheating

based on Y. Cui & EIS, arXiv: 2112.00762 [hep-ph]

Evangelos Sfakianakis

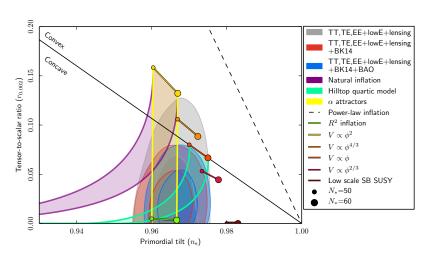
PASCOS 2022

Supported by the "la Caixa" Foundation and EU's Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement



Inflation

$$\mathcal{P} = A_s(k/k_*)^{n_s-1}$$


(Simple) Single field inflation:

- Solves horizon, flatness, monopole problems
- Explains fluctuations as stretched quantum mechanical perturbations
- Predicts a nearly scale invariant spectrum (of tunable amplitude)
- Predicts Gaussian perturbations

- Spectral index not flat by 5σ
- Spectral index running is small
- $|f_{NL}| \lesssim \mathcal{O}(1)$

Hints from the sky

Upper limit on gravitational waves from inflation.

Challenges in early universe cosmology

Inflation agrees with observations, providing an elegant paradigm for the early universe

What we ponder:

- Transition to the hot Big Bang (reheating)
- String Theory
 - Axions & Moduli Fields
 - Inflation in String Theory & Swampland
- The Standard Model and beyond
 - Neutrinos
 - The Higgs & SM running

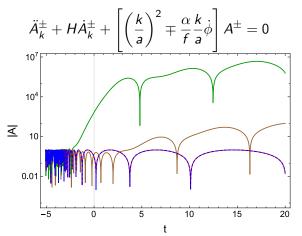
What we (hope to) see:

- CMB: LiteBird and CMB-S4 looking for B-modes
 - Relics from the early universe
 - lepton number
 - Primordial Black Holes
 - Intergalactic magnetic fields
- Stochastic Gravitational Waves in LIGO and LISA

Natural (axion) inflation

An axion is an attractive candidate for the inflaton

A field with a shift symmetry can only couple **derivatively**

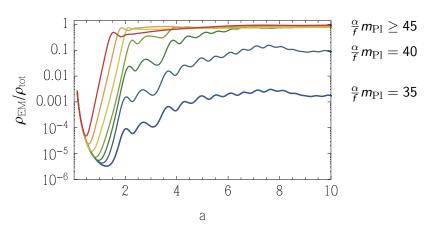

$$\mathcal{L}_{\mathrm{Int}} \subset \begin{bmatrix} \frac{\mathsf{E}/\mathsf{M} \ \text{field}}{\frac{\alpha}{8f}} \phi \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \\ & + \begin{bmatrix} \frac{\mathsf{C}}{f} \partial_{\mu} \phi \bar{\psi} \gamma_{5} \gamma^{\mu} \psi \\ & -\frac{\alpha}{f} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} \phi A_{\nu} \partial_{\alpha} A_{\beta} \end{bmatrix}$$

From a EFT perspective, we expect these terms to be present.

- Adshead, Giblin, Scully & EIS, arXiv: 1606.08474, 1502.06506
- Adshead & EIS, arXiv: 1508.00891, 1508.00881

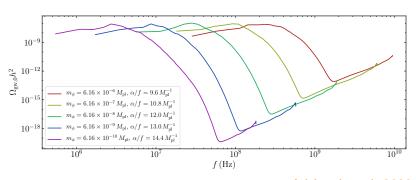
Gauge field production

Decompose in two polarizations (+, -).



Parity violating exponential enhancement.

Gauge Field Preheating


Coupling the axion to E/M fields can lead to explosive transfer of energy from the inflaton.

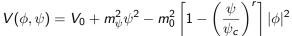
Reheating occurs after a single axion oscillation for $\frac{\alpha}{f}m_{\rm Pl} >$ 45.

From U(1) to GW's

Gauge field production leads to the helical GW's.

Adshead et al, 2020

However, the large frequency makes them unobservable at interferometers.


Hybrid Inflation

Multiple fields

qualitatively different behavior

Hybrid Inflation (Linde, 1994):

- a slow rolling field triggers a phase transition
- ⇒ destabilizes a second field
- ⇒ Inflation ends

1000

- (light) real timer scalar field
- (heavy) complex waterfall scalar field

Result: Large Spike at Small Scales!! (e.g. Guth & EIS, 2012)

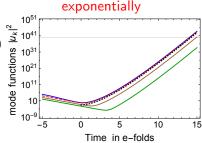
A hybrid² model

An attempt to combine hybrid and natural inflation

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \sum_i \frac{1}{2} \partial_\mu \phi_i \partial^\mu \phi_i - \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - V(\psi, \phi_i) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4f} \sum_i \frac{\phi_i}{\Lambda_i} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

where

$$V(\psi,\phi_i) = V_0 + \frac{V_1(\psi)}{2} - \frac{m_0^2(\phi_i)^2}{2} \left(1 - \frac{\psi^2}{\psi_0^2}\right) + \frac{g}{4}(\phi_i)^4$$


Waterfall Field Dynamics

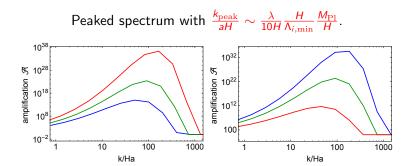
$$\ddot{\psi} + 3H\dot{\psi} + m_{\psi}^{2}\psi = 0$$

$$\ddot{\phi}_{i} + 3H\dot{\phi}_{i} + \left[\frac{k^{2}}{a^{2}} + m_{\phi}^{2}(t)\right]\phi_{i} = 0$$

where

$$m_{\phi}^{2}(t) = -m_{0}^{2} \left(1 - \frac{\psi^{2}}{\psi_{0}^{2}}\right)$$

Waterfall field modes grow



$$\phi_i(\vec{x},t) = \phi_i(\vec{x},t_c)e^{\int_{t_c}^t dt' \lambda(t')}$$

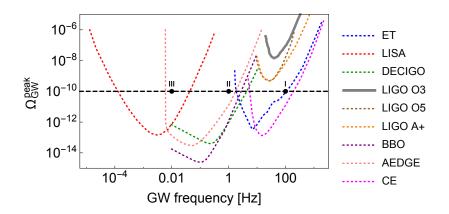
where
$$\frac{\lambda(t)}{H}\simeq -rac{3}{2}+\sqrt{rac{9}{4}+rac{m_0^2}{H^2}\left(1-e^{-2rac{m_\psi^2}{3H^2}t}
ight)}$$

Gauge field Dynamics

Gauge field energy density $\rho_A \sim \mathcal{A}^2 k_{\rm peak}^4/a^4$, where \mathcal{A} is the amplification factor.

Complete preheating requires $ho_{
m infl} \simeq
ho_{A}$, leading to $\mathcal{A} \sim \left(\frac{M_{
m Pl}}{H} \right) \left(\frac{k_{
m peak}}{aH} \right)^{2}$.

GW signals


A simple way to estimate GW production (Giblin & Thrace, 2014)

$$\begin{array}{lcl} \nu_{GW}^{\rm peak} & = & 2.7 \times 10^{10} \frac{k_*}{\sqrt{M_{\rm Pl}\,H}} \, \rm Hz \,, \\ \\ \Omega_{\rm GW}^{\rm peak} & = & 2.3 \times 10^{-4} \, \alpha^2 \, \beta \, w \left(\frac{k_*}{\sigma}\right) \left(\frac{H_*}{k_*}\right)^2 \,. \end{array}$$

- α: fraction of the energy in the GW source relative to the Universe's total energy density
- \bullet β :encodes the anisotropy of the source
- w: EOS of the universe
- k_* : peak wavenumber of the source spectrum
- σ : width of the source spectrum

Signals and experiments

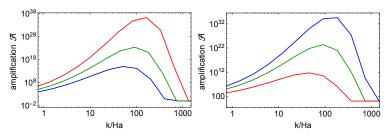
Summary

A rare realistic way to probe low-scale inflation

- A simple model leading to detectable GW signals from preheating, using axions and dark photons in a hybrid inflation setup
- Helical GW's provide a distinguishing feature
- Associated PBH production provides more correlated observables

We thank the KITP for its hospitality.

Primordial Black Holes & Parameter Dependence


The density perturbations spike leads to the formation of PBH's with $M = (M_{\rm Pl}^2/H_*)e^{2N_*}$ and probability

$$eta_{
m BH}(M) = {\it erfc}\left(rac{\zeta_c}{\sqrt{2}\sigma}
ight) \simeq rac{\sqrt{2}\sigma}{\sqrt{\pi}\zeta_c}{
m e}^{-\zeta_c^2/(2\sigma^2)}$$

$H/M_{ m Pl}$	m_0	Λ/H	$N_{ m wf}$	$ u_{ m GW}^{ m peak}$	$\Omega_{ m GW}^{ m peak}$	$M_{ m BH}$
10^{-20}	6 <i>H</i>	10^{18}	14.2	$100\mathrm{Hz}$	10^{-10}	$10^{-5} M_{\odot}$
10^{-20}	15 <i>H</i>	10^{18}	6.2	$100\mathrm{Hz}$	10^{-10}	$10^{-13} M_{\odot}$
10^{-24}	7 H	10 ²²	14	$1\mathrm{Hz}$	10^{-10}	$0.1 M_{\odot}$
10^{-30}	8 <i>H</i>	10^{27}	14.5	$10^{-3}\mathrm{Hz}$	10^{-10}	$10^5 M_{\odot}$
10^{-30}	12 H	10^{27}	10	$10^{-3}\mathrm{Hz}$	10^{-10}	$10 M_{\odot}$

Gauge field Dynamics

Maximum amplified wavenumber: $k_{\max}/(aH) \simeq (\Lambda_{i,\min} H)^{-1} \lambda \dot{\phi}_{\mathrm{end}}$ where $\dot{\phi}_{\mathrm{end}} = \lambda \phi_{\mathrm{end}} \sim \lambda M_{\mathrm{Pl}}$, while the peak is at $\frac{k_{\mathrm{peak}}}{aH} \sim \frac{\lambda}{10H} \frac{H}{\Lambda_{i,\min}} \frac{M_{\mathrm{Pl}}}{H}$.

Gauge field energy density $ho_A \sim \mathcal{A}^2 k_{\mathrm{peak}}^4/a^4$, where \mathcal{A} is the amplification factor. Complete preheating requires $\mathcal{A} \sim (M_{\mathrm{Pl}}/H) (k_{\mathrm{peak}}/aH)^2$

