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.Cosmological perturbations are fundamental to establish any predictive model of the Universe
.They provide the seeds for cosmic background radiation anisotropies and for large scale structure formation
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The CMB leaves room from deviations from a power law spectrum,
Planck 2015 results. XX. Constraints on inflation
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Enhancement mechanisms of the primordial curvature spectrum

Features in the spectrum of primordial curvature perturbations
could also produce primordial black holes (PBH)

There are scenarios which can enhance the spectrum:

-Multi-fields
Slow-roll violation in single field

.Modification of gravity
A combination of the above



In presence of anisotropy the equation using SESS takes the form
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while using the standard approach we obtained
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The equations we have obtained are completely general.

They can be applied to modified gravity theories, multi-fields systems, or
any combination of these models!




The momentum dependent effective sound speed (MESS) is defined as

where 6 P. and 85, are the Fourier transforms of the comoving pressure
and energy density respectively.

In absence of anisotropy, using MESS and manipulating the Einstein’s
equations in Fourier space we get
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while in the standard approach there is a source term
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Important note:

The MESS V. is not simply the Fourier transform of the SESS v.!



In presence of anisotropy, using MESS and manipulating the Einstein’s
equations in Fourier space we get
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The equation with MESS is model independent.

MESS can be treated as an effective quantity in data analysis, without
assuming any model.

Using the standard approach we get
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The equations we have obtained are completely general.

They can be applied to modified gravity theories, multi-fields systems, or
any combination of these models!



Some notation for scalar perturbations : No gauge fixing

ds® = — (1 + 2A)dt* + 2a0; Bdx"dt+
+ a? {0:;; (1 +2C") + 20,0, E'} dzdx’ ,

TOTAL energy momentumtensor 7% = —(p+5p) , 1% = (p+ P)O;(v+ B)
Includes matter, : . . . 1 (3)
Vector, scalar fields, T“j = (P + .§P)5@j + 5*k8kajﬂ — 5525 A I1Il.

comoung sticesgauge:(TV) = () — q=)P, §=0p, =4, 0= B.(=Cr=E,
ds* = —(1 4 2v)dt* + 2a0;p d" dt+
+a? {6;;(1 +2¢) +20;0;v} da'da’
(T%)e=—(p+B) , (T)c=(P+a)d,




Standard definitions of entropy in the comoving gauge and uniform density gauge
SP,, = c.,(t)25p + sP™d cZ=P'/p’ Adiabatic sound speed
SP. = cs(t)?6p. + s P4 Comoving curvature pertubation sound speed
a(t,z") = cs(£)?B(t, x") + T (¢, z")

But ....the one in the comoving gauge it is not unique !
¢ = &) = cs(t)* + Acy(t)?,
[ = T(t2") =T(t,2") - Ac(t)*B(t, ")

Comparing it to the SESS we can get the relation between them

2(t,a1) = AT a(t,z') = cs(t)*(t, ') + T(t, o)

B(t, ')



Relation of SESS with entropy and anisotropy
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The SESS encodes the effects of entropy and
anisotropy, but for anisotropy there is also an extra
source term in the equations of motions.



Most general equation for any system including anisotropy and entropy effects

SESS Without SESS
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The first and second order equations are obtained using the following important relations, obtained from
Manipulating the Einstein's equations in the comoving gauge. The Poisson eq. Is more used in the
modified gravity theories literature
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G-inflati T. Kobayashi, M. ‘Yam'aguchi, and J. Yokoyama
nration Phys. Rev. Lett. 105, 231302  (2010)

L(g,x) = K(¢,x) + G(¢, x)0¢
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The unitary and comoving gauge do NOT coincide



Gauge transformations

0p — 0 — @' 0T,
A— A—HéT — 67",
B — B+ 61 — 62,
C — C+ Hor,
E—FE—ox.




. T. deayaéhi? M. Yamaguchi, and J. Yokoyama,
Unitary gauge Prog. Theor. Phys. 126, 511 (2011), arXiv:1105.5723.
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Comoving gauge

/ 1
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As predicted by the MESS formalism the sound speed is
momentum dependent



Relation between the curvature in the unitary
and comoving gauge
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Spectrum enhancement

A=[eC¢ +E (¢ +E)]



Effects on PBH formation
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Conclusions
 The unitary and commoving gauge do not coincide
in Horndesky’s theory, as verified in a specific case

* The time evolution of curvature perturbations in the
two gauges can differ before they freeze

* This can be important for small scale perturbations
which re-enter the horizon before freezing,
specifically for models which could produce PBH by
modifying the curvature spectrum on small scales
not probed by CMB

* MGT effects on PBH formation ?
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FIG. 1: The relative difference AP /P is plotted as a
function of k/ko. The solid, dashed and dot-dashed lines
correspond o = 2.5 x 10 'ko and A. = 4 x 10 ', A. =
3 10 ' and A, = 1.7 x 10 ! respectively.

The scale kO could have different origins: turning point in multi-fields modes,
particle production, modification of gravity, etc.



Einstein’s equations in the comoving gauge and derivations of EOM in terms of MESS
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The difference between the uniform density field and the comoving gauge

The uniform density field (aka “unitary”) is in general different from the comoving gauge
They coincide for K(X) — inflation, but not for Horndesky theory or multi-fields systems

v+ B s v+ B-0t

We can now define explicitly gauge invariant quantities:

comoving pressure perturbation a
comoving density perturbation f
comoving curvature perturbation

— A+6t. , p=DB-—a 't
aF — B+a 10t.=av—u,
= C — Hét,..

VoS I
|

— P+ DPSt, . B=0dp+ pot.,

0t.= v+ B

Einstein's equations in the comoving
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How general is this equation?

-SESS reduces to the standard definition of sound speed for single field K(X) theories
Jtisa guantity which effectively reproduces the effects of the source terms
. In the EOM which in the standard formulation are associated to entropy perturbations
.Given the generality of the assumptions this formulation is valid for any system for which

.an energy momentum tensor can be defined, including multi-fields systems or modified
.gravity theories (MGT)

It is also valid for MGT, after writing the MGT field equations as Einstein's equations with

.an appropriate definition of an effective energy momentum tensor



How useful SESS and MESS are?

These equations are completely general and can be applied to any physical system for example:
Multi-fields, scalar or vector fields (scalar part)

Modified gravity, e.g. Horndesky theory, in terms of an effective EM tensor : Gw=7fff
Non-Gaussianity can be studied in terms of MESS and SESS

The anisotropy stress term is easy to add and does not modify the definition of MESS and SESS
Mess is not simply the Fourier transform of SESS !



After substituting SESS we get the “standard” T 20 5
source term
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Generalization to multi-fields

Single field KGB : intrinsic entropy LKG((I’, X) — K (@, X) + G ((IJ, X) 1P
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