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At 𝜙 t = 0, 𝜒-production from vacuum!→ “preheating”
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non-perturbative in 𝜁 !
Kofman, Linde, Starobinsky (1997)

Introduction

after the end of inflation, 
the background inflaton field 𝜙(𝑡) creates coupled particles



What is the fate of 𝜒?
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repetition of the process→ huge number of 𝜒 → back-reaction to 𝜙

In this regime, lattice simulations are necessary
Khlebnikov, Tkachev (1996)(1997)
Prokopec, Roos (1997)
….etc.

ℒ! = −
1
2 𝜕𝜒 " −

1
2 𝑚!

" + 𝜁𝜙" 𝜒"

𝑀!,$%%
" 𝑡 = 𝑚!

" + 𝜁𝜙" 𝑡 + 𝒪 𝐻"

→ 𝑚!
"

𝑛&
! ~exp −

𝜋 𝑘" +𝑚!
"

𝜁 �̇�(0)

Introduction



𝜙

𝑉(𝜙)

𝜒
𝜒 𝜒

𝜒

Kofman, Linde, Starobinsky (1997)

𝜒

𝜒
𝜒

𝜒
𝜒

𝜒

𝜒
𝜒 𝜒

𝜒

In this regime, lattice simulations are necessary
Khlebnikov, Tkachev (1996)(1997)
Prokopec, Roos (1997)
….etc.

ℒ! = −
1
2 𝜕𝜒 " −

1
2 𝑚!

" + 𝜁𝜙" 𝜒"

𝑀!,$%%
" 𝑡 = 𝑚!

" + 𝜁𝜙" 𝑡 + 𝒪 𝐻"

→ 𝑚!
"

𝑛&
! ~exp −

𝜋 𝑘" +𝑚!
"

𝜁 �̇�(0)

We will NOT focus on this regime!

repetition of the process→ huge number of 𝜒 → back-reaction to 𝜙
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What if 𝜒 is coupled to other fields?
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“instant preheating”

Felder, Kofman, Linde (1998), (1999)

We will give a fully QFT description of this process!
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but its QFT description is nontrivial
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quantum fields dressed by backgrounds
→ Furry perturbation theory = interaction picture for dressed particles

Strategy
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treat 𝑆! non-perturbatively but 𝑆"#$ perturbatively  

(after 𝜒 → 𝑎!/#𝜒 , 𝜓 → 𝑎!/#𝜓) “dressed” masses
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Furry (1951)

step 1: Solve free dynamics of “dressed” fields
step 2: Evolve operators by ℋ456 perturbatively

this approach is applicable to QFT in various backgrounds
e.g. strong field QED, inflation, preheating…etc.



Strategy
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1. focus only on the scattering process within 𝑡 ~ 0 , 2(
"
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which dominates 𝜒 & 𝜓-production

2. 𝐻(𝑡) ≪ 𝑚! , 𝑚', 𝑎(𝑡) ~ 𝑐𝑜𝑛𝑠𝑡. (neglect Hubble terms…etc.)
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To solve free dynamics, we use the following approximation:
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step 1: “free” field dynamics
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step 2: perturbative time evolution
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perturbative evolution of operators
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approximation of the exact formula:

(by using integral. rep of 𝐷1(𝑧)& saddle point method)

How can we interpret this result?
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result 1: kinematically allowed decay

for the modes satisfying the kinematic condition 𝜇> < Ω𝒌 + Ω/𝒌E𝒑 < 𝜔>
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Ω𝒌 + Ω𝒌3𝒑



result 1: kinematically allowed decay
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kinematic condition:
Ω𝒌 + Ω9𝒌S𝒑 = 𝜔\(𝑡) at some 𝑡
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decay probability with time-dependent background : 𝑃𝒌 ,𝒑6G$$ = ∫𝑑𝑡 𝜆" ()
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𝜔𝒑Ω𝒌Ω/𝒌E𝒑
decay probability (without background field):

phenomenological approach:

Furry perturbation theory reproduces a phenomenological expectation!
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result 2: kinematically forbidden particle production
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“decay” is kinematically forbidden

if 𝜇𝒑 > Ω𝒌 + Ω𝒌E𝒑,

no instantaneous energy conservation
→ no perturbative “decay”
→ no particle number for such modes
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What about the modes NOT satisfying the kinematic condition?

??

such a perturbative expectation is completely wrong!
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exact formula shows the kinematically-forbidden particle production :

result 2: kinematically forbidden particle production

since 𝑛𝒑
& = exp −𝜋 '𝒑e

(
,  𝑛) ≫ 𝑛& is possible in this regime

• not understood from the standard decay 𝜒 → |𝜓𝜓⟩
• not restricted to 𝜌' < 𝜌! as energy conservation does not hold

note that for perturbative (kinematically allowed) decay, 𝑛; < 2𝑛6



𝜒 𝜓𝜙(𝑡)

1
2
𝜁𝜙"(𝑡) �̂�"

1
2 𝜆 �̂�

Y𝜓"

𝑛Y
; ≈

𝜆7𝜋
4𝐶

8
𝑑=𝑝
2𝜋 =

exp −𝜋
𝜇𝒑7
𝐶 1 − 𝐹 𝑥
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e.g.  𝑚6 , 𝑚; = (1.3×10:f, 5×10:=)GeV
𝜁 = 1.0×109g, 𝜆 = 𝑚6 , 𝑚8 = 10:=GeV

𝜌'
𝜌!

= 2×102 (but backreaction is negligible as @-
@.
= 2.6×10)?A)

𝜓 is indirectly coupled to inflaton but produced more !

the effect of multiple scattering with 𝜙

𝜙
𝜙

non-trivial consequence of the kinematically-forbidden production for 𝑚! ≫ 𝑚':  

result 2: kinematically forbidden particle production

not captured by perturbative scattering calculations



Summary

𝜒
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𝜓

𝜙
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QFT approach to scattering during preheating
→ Furry picture perturbation theory

(perturbative processes of dressed free fields)

For a more systematic approach to general backgrounds, 
semiclassical methods (such as WKB) may be useful H. Taya, YY

work in progress

• we confirmed the expected behavior of kinematically allowed decay
• we found a new non-perturbative particle production= kinematically forbidden production

furthermore, for light daughter particles, 𝑛%HGI4JJ$5
' ≫ 𝑛;KKHL$M

'

(including Stokes phenomena ~ pair creation from vacuum)

this approach is applicable to QFT in various backgrounds
(strong field QED, preheating, inflation, …etc.)
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numerical comparison

perturbative decay(=kinematically allowed decay)
dominates the particle production

→ exact result ~ phenomenological expectation

a heavy daughter particle case a light daughter particle case

kinematically-forbidden production dominates
→ phenomenological (perturbative) result

shows exponentially large discrepancy


