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Corrections to Classical Evolution could be relevant for BH, De Sitter and Inflation:_Depletion of De Sitter,

Non-Thermal corrections to Hawking radiation,...
(See Dvali, Gomez, arXiv:1312.4795; Dvali, Gomez, Zell, arXiv:1701.08776)

2



Semiclassical Approximation is the first approach to compute quantum corrections to classical
systems:
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Classical configuration: vacuum Fluctuations defined on the 'new’ vacuum



Semiclassical Approximation is the first approach to compute quantum corrections to classical
systems:

d(to, ) = . Palto,r) + , 0%alto, ) |
Classical configuration: vacuum Fluctuations defined on the 'new’ vacuum

1) The original classical background is not a

reliable vacuum anymore . . .. .
4 Inconsistencies arising at higher order,

which you cannot see in a semiclassical
analysis
2) Higher-order correlators start to dominate
the dynamics (loss of coherence).




Going beyond the semiclassical approximation means to 'resolve’ the structure of the 'vacuum’
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Background: Vacuum Background: Coherent state of zero momentum
of-shell particles built on the true vacuum

(Fig. from Dvali, Gomez, Zell, arXiv:1701.08776)

Example: Perturbations in de Sitter are constituents of the ground state that annihilate
into excited particles. (Depletion of de Sitter background)
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Background: Vacuum Background: Coherent state of zero momentum
of-shell particles built on the true vacuum

(Fig. from Dvali, Gomez, Zell, arXiv:1701.08776)

Example: Perturbations in de Sitter are constituents of the ground state that annihilate
into excited particles. (Depletion of de Sitter background)

Estimates obtained in S-matrix: Can we rigorously compute them?
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‘Def’: State of Minimal indetermiation and Eigenstate of the annihilation operator
Intuitive def’: The most Classical States you can build and represent a quantum

counterpart to the concept of a 'Classical system’

Why Coherent States:

1) Tool to understand quantum corrections to classical dynamics
2) They provide a full set of initial conditions for our system.
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C-numbers

@0 (x,t0)KT96 (2:10) ) [())

interacting vacuum of

the theory
Initial conditions from the state:
(Clo(z,0)|C) = ¢q (Clo(x,0)9(y,0)|C) = ¢§ + (Q(x,0)(y, 0)|£2)
(Ol (x,0)[C) = mg (Cl7(2,0)7(y,0)|C) = m5 + (7 (x,0)7(y,0)|0

/(') is a Condensate of Scalar Bosons with n>2 n-point functions initialized in the
Interacting vacuum.




Message: by defining the state, we have a clear view of quantum effects and their

consistency
L=g@07 —gms —J6 4 |C) = et Patoil@io) )
2 2 4

An example of a theory where we know what processes between constituents we should
expect.

1) Dynamics of the State
(Back-reaction)

N N -4k, ks

2) Consistency of the State
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1) Dynamics: back-reaction as depletion of the Coherent state

(Clo(x,1)|C) = (1)

Back-ground field method to compute the time-evolution:

A A A~ A . .
b+ M+ 500 =0 + 6=+, (Clg(,1)|C) =0

\‘ ® + m2d A )\ C’W +C9h2) 0 4/

Quantum source

- ( x,t+m2+§¢><t>2) (Cl (@, it y)IC) + Oh) =0 o

Classical solution

The state gives the initial conditions to solve the system
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We solve the second equation perturbatively in A and plug in the first equation

A
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' Quantum A2 source Quantum A3 source Quantum A4 source

to tn—1
Sy (to) = / dtl.../ dt, ®°(t1)...0%(tn) Dy (t, t1, ..., ty)
0 0

1) 1-point and 2-point functions contain all 2 the
information on the system

2) Semiclassical modes gives the 1-loop back reaction

3) Re-sum Classical non-linearities but not quantum non-
linearities



We solve the second equation perturbatively in A and plug in the first equation

A
(07 + m2y,) D(¢) A 3'<I>3(t) = \2®(1) 51 (1), + N O(t)Sa (1), + N (1) S
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)\4 ¢6

I ~ Oh
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2.a) Consistency of the state from Initial conditions

|C> _ e—if d3$(¢ﬁ,to)+woq§(w,to)) | Q>

<C|7Ar(a:,t0)\C>

finite finite
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2.a) Consistency of the state from Initial conditions

|C> _ e—ifd3aj(gb0'ﬁ'(a:‘,t())—|—ﬂ'()$($,to))|Q>

<C|ﬁ(x,t0)\C>

finite

i 1 VA . VA
CUHIC) = [ @z |30+ 5 (V0 + 5 (m? + @I + 5 ok

Strongly depend on the state
(Berezhiani, Zantedeschi, arXiv:2011.11229)

1) At 1-loop, energy is finite only if the bare coupling is finite: no logA divergence.
2) Standard perturbative prescriptions are inadequate to renormalize the theory
3) The total energy is a conserved quantity, statements at all time.

11



2.b) Consistency of the state from time-evolution

The perturbative dynamics has divergences:

) )\
® +mP A )+ O(h*) =0

L__;_kl

Divergent: logN\ and A2 terms

logA divergence vanishes at t=0, A2 Is mass renormalization
(Similar to the energy: bare coupling as to be finite, mass needs to be renormalized,_in t=0)

but, we have to renormalize to have a finite evolution: S-matrix prescriptions for t>0 and t<O0:

5 d°p Renormalization moves some
)\ph = A —3A (27T) 3 (2 5 ) 3 divergences in the field acceleration at t=0
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1)The one-point function is finite at t=0:

(I)(O) — ¢cl /

2) The second time derivative of the 1-point function is divergent at t=0:

: - because
%gr(l) b~ l()g mi x we had to 'remove’
divergences which
3) The total energy (conserved quantity) inherits the same divergences: were not there
claiey X

Implications for the state?

All perturbative divergences re-sum in a full quantum computation OR e have to dismiss
‘unsqueezed’ coherent states as members of a physical Hilbert space
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Conclusions

Coherent states are an interesting tool to parametrize highly occupied systems.

e We found that within a quartic theory, the one-point function of the field operator is
depleted according to S-matrix arguments.

e \We discussed possible pathologies of the state itself that emerges at

Next Steps?

® Choose different Coherent states as the initial state of the system:

|C> __ 6—ifd3xgbofr(a’;,t0)—l—% fd?’a:d?’yfr(a?,t())G(x—y)fr(y,to)|Q>

e Apply to Cosmological Systems. De Sitter? Black Holes?
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Comments on higher order corrections

1) The problem with divergences at initial times is ‘enhanced’ at 2-loop loops: 'sunset diagram’
divergence vanishes at t=0. Mass renormalization becomes problematic too.

. ) 1 ) VA VA
CUHIC) = [ @z |3d+ 5 (Vo) + 5 (m? + @i ) + 7 o

2) At h2, equation for the two-point function acquires ‘non-trivial’ corrections:

(Ot 2+ 58°(0)) (€I (w050, 0)IC)

1-loop one-point function

A A

+|2<1>( HOI* @, hiy: 1)IC) + g 2O(C1Y° @, 1y )\c>‘_o

Non-trivial evolution due to modes interactions
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