APPLYING ADS/QCD METHODS TO COMPOSITE HIGGS MODELS

With N.Evans, J. Erdmenger, W. Porod 25.07.2022,Heidelberg

> Yang Liu, Universität Würzburg Special Thanks go to Studienstiftung

MOTIVATION

Composite Higgs naturally explains

- ► the light Higgs mass
- ► The large top mass

But

Strongly coupled theory, perturbative calculations not viable in low energy regime Therefore

• Use AdS/CFT correspondence dual to a weakly coupled theory.

Composite Higgs: A Tiny Review

SM without Higgs and Yukawa

SM without Higgs and Yukawa

Composite Sector With NGBs

. . . .

SM without Higgs and Yukawa

Gauge it

Composite Sector With NGBs

SM without Higgs and Yukawa

Gauge it

Break H explicitly: NGBs -> pNGBs (Higgs mass) Higgs potential -> induce EWSB

SM without Higgs and Yukawa

Gauge it

Similar to χPT , $G \to SU(N_f)_L \times SU(N_f)_R$, $H \to SU(N_f)_V$

Break H explicitly: NGBs -> pNGBs (Higgs mass) Higgs potential -> induce EWSB

How does the dual theory look like?

THE MODEL, ABELIAN

- [J.Erdmenger, N.Evans, W.Porod, K.S.Rigatos, hep-th/2010.10279]
- ► Takes the form of "chiral perturbation theory", but 5D AdS
- Abelian in the sense only one D7-brane is present
- \rightarrow all (hyper)quark masses are degenerated

PROMOTE TO NON-ABELIAN

Promoting to $U(N_f)$ non-degenerated theory \rightarrow fields, metric, coordinates $N_f \times N_f$ matrices But matrices' positions matter \rightarrow use STr $(X_a X_b \dots X_n) = \frac{1}{n!} \sum$ (all permutations of X_i), but only on $D_a X$, F_{ab} , $[X_a, X_b]$ ends up equiv. to Tr at $O(F^2)$.

LAGRANGIAN

$$\mathscr{L} = \rho^{3} Tr \left\{ \frac{1}{r^{2}} D^{a} X^{\dagger} D_{a} X + \frac{1}{\rho^{2}} \left[\Delta m^{2} X^{\dagger} X + L \frac{\partial \Delta m^{2}}{\partial L} \left(\frac{1}{\sqrt{2N}} \sigma i d_{N} + \sum_{k} \frac{\xi_{k}(x)}{\sqrt{2N}} T_{k} \right)^{2} \right] + \frac{1}{g_{5}^{2}} \left(F_{L}^{2} + F_{R}^{2} \right) \right\}$$

$$\blacktriangleright X = \left(L + \sigma + \xi_{i} T^{i} \right) e^{i(\phi + \pi_{i} T^{i})}, T^{i}: \text{Pauli matrices. } A_{L,R} = \frac{1}{2} (V \pm A)$$

$$\blacktriangleright \sigma \text{ is the scalar singlet, } \xi_{i} \text{ is the scalar triplet, } a = 0, \dots, 4 = \mu, \rho$$

let, ς_i is the scalar triplet, $a = 0, ..., 4 = \mu, \rho$ $L = \frac{1}{\sqrt{2N_f}} \begin{pmatrix} L_u & 0\\ 0 & L_d \end{pmatrix}$ is the vacuum configuration

defined in the same sense as r.

 $r = \begin{pmatrix} r_u & 0 \\ 0 & r_d \end{pmatrix}$ is the radial coordinate, Δm^2 and $\frac{\partial \Delta m^2}{\partial L}$ are also diagonal matrices

 Λm^2

► $\Delta m^2 = \Delta m^2(\rho)$ acts as the scalar mass,

- ► Vacuum UV solution: $L(\rho) = m\rho^{-\gamma} + \langle \bar{q}q \rangle \rho^{\gamma-2}$, $\Delta m^2 = \gamma(\gamma 2) \sim -2\gamma$,
- $\succ \gamma$: anomalous dimension of the quark bilinear.
- ► Breitenlohner-Freedman bound: Δm^2
- below this: chiral symmetry breaking. $\rho \frac{d\alpha}{d\alpha} = -b_0 \alpha^2 - b_1 \alpha^3, \quad \gamma = \frac{3C_2(R)}{2\pi} \alpha, \text{ the } b_0, b_1 \text{ are omitted here}$

$$= -1 \rightarrow \gamma = \frac{1}{2},$$

OVERLAPPING BRANES

- > When $L_{\mu} = L_d$ the two branes overlap, 4 copies of the abelian theory.
- Scalar singelt & triplet are different
- Singlet eom $3\kappa L_0(\rho)^2 \sigma(\rho)\rho$, triplet eom $\kappa L_0(\rho)^2 \xi_3(\rho)\rho$
- ► Can get the scalar masses splitting in the correct range.

► But if add $\mathcal{O}(X^4)$ contributions to the scalar potential: $\kappa [Tr(X^{\dagger}X)]^2$, κ small, \rightarrow

- $\succ L_u \neq L_d$
- > The off diagonal ones have coupled eoms, mixing ~ $(L_d L_u)$, can be ignored
- ► E.g. Vector:

$$\partial_{\rho} \left(\rho^{3} \partial_{\rho} V_{1}^{\mu}(x^{\mu}, \rho) \right) + \rho^{3} \left(\frac{1}{r_{u}^{4}} + \frac{1}{r_{d}^{4}} \right) \left[M_{V_{1}}^{2} - \frac{g_{5}^{2}}{4} (L_{u}(\rho) - L_{d}(\rho))^{2} \right] V_{1}^{\mu}(x^{\mu}, \rho) = 0$$

Impose boundary conditions:

 $f(IR) = 1, \partial_{\rho} f(IR) = 0, f(UV) = 0$

Shoot from IR and solve for the masses s.t. the field f vanished in the UV \rightarrow get triplet masses

The diagonal ones are decoupled in states that are not mass eigenstates in SU(2)Impose plane-wave ansatz for the singlet and triplet (vector as an example) $V_{0,3}(x,\rho) = V_{0,3}(\rho)e^{ikx},$

Eoms are now

$$V_{0}: 2\partial_{\rho} \left(\rho^{3} \partial_{\rho} V_{0}(x^{\mu}, \rho)\right) + \rho^{3} \left(\frac{1}{r_{u}^{4}} + \frac{1}{r_{d}^{4}}\right) M_{V_{0}}^{2} V_{0}(x^{\mu}, \rho) + \rho^{3} \left(\frac{1}{r_{u}^{4}} - \frac{1}{r_{d}^{4}}\right) M_{V_{3}}^{2} V_{3}(x^{\mu}, \rho)$$
$$V_{3}: 2\partial_{\rho} \left(\rho^{3} \partial_{\rho} V_{3}(x^{\mu}, \rho)\right) + \rho^{3} \left(\frac{1}{r_{u}^{4}} + \frac{1}{r_{d}^{4}}\right) M_{V_{3}}^{2} V_{3}(x^{\mu}, \rho) + \rho^{3} \left(\frac{1}{r_{u}^{4}} - \frac{1}{r_{d}^{4}}\right) M_{V_{0}}^{2} V_{0}(x^{\mu}, \rho)$$

$$\partial_{\mu}\partial^{\mu}V_{0,3}(x,\rho) = M_{V_{0,3}}^2 V_{0,3}(x,\rho)$$

Impose boundary conditions diagonal : $\partial_{\rho} \left(V_0(x^{\mu}, \rho) + V_3(x^{\mu}, \rho) \right) \Big|_{\rho_{\mu}} =$ $\left[V_0(x^{\mu}, \rho) + V_3(x^{\mu}, \rho)\right]_{\rho_{\mu}} = \alpha,$

Shoot from IR (ρ_u , ρ_d), and feed the triplet mass (from off-diagonal) to M_{V_2}

demand the masses found should satisfy M_{V_0} M_{V_2}

Solve a boundary condition pair (α, β): intrinsic, apply to scalar, axial-vector and π

$$0, \partial_{\rho} \left(V_0(x^{\mu}, \rho) - V_3(x^{\mu}, \rho) \right) \Big|_{\rho_d} = 0$$
$$\left[V_0(x^{\mu}, \rho) - V_3(x^{\mu}, \rho) \right]_{\rho_d} = \beta$$

 $M_{V_3} = M_{V_1}$

$$=:\frac{M_{\omega}}{M_{\rho}}$$

Observables	$ I^G(J^{PC}) $	$QCD(MeV)^2$	non-Abelian $AdS/SU(3)$ (MeV)	Deviation
$M_{\omega(782)}$	$0^{-}(1^{})$	782.66 ± 0.13	783*	fitted
$M_{\rho(770)}$	$ 1^+(1^{}) $	775.26 ± 0.23	775*	fitted
$M_{f_0(980)}$	$0^+(0^{++})$	990 ± 20	998	1%
$M_{a_0(980)}$	$1^{-}(0^{++})$	980 ± 20	999	2%
$M_{f_1(1285)}$	$0^{-}(1^{+-})$	1281.9 ± 0.5	1234	4%
$M_{a_1(1260)}$	$1^+(1^{+-})$	1230 ± 40	1197	3 %
M_{π^0}	$1^{-}(0^{-+})$	134.9768 ± 0.0005	146	8 %
$M_{\pi^{\pm}}$	$1^{-}(0^{-})$	139.57039 ± 0.00018	145	4 %

 $m_u = 2.3 \text{ MeV} \text{ and } m_d = 4.6 \text{ MeV}$

• • • • • •

The flavour group is U(3)Lagrangian, set-up same as 2-flavour case Simply extended to 3-flavour: $m_{\mu} = m_d < m_s$ Eoms grouped in 3 classes:

$$u,1,2,3): u\bar{u}, ud, dd; \qquad (4,5,6,7): u\bar{s}, d\bar{s}; \quad s: s\bar{s}$$
$$f_u := \frac{\sqrt{2}}{\sqrt{3}} f_0 + \frac{1}{\sqrt{3}} f_8, \quad f_s := \frac{\sqrt{2}}{\sqrt{3}} f_0 - \frac{2}{\sqrt{3}} f_8.$$

Vectors & scalars: well defined meson states, ideally mixed, phy. states: <u>SU(2)</u> <u>singlet</u> and <u> $s\bar{s}$;</u>

Axial-vectors: not so well defined, but might follow the same structure **Pseudo-scalars**: slightly mixed, phy. states: <u>SU(3) singlet</u> and 8th component of

Pseudo-scalars: slightly mixed, phy. s the <u>octet</u>: η' and η .

Can't use the diagonal procedure to get η and η' masses.

Observables	$I^G(J^{PC})$	QCD (MeV)	$N_f = 3$ Numerics (MeV)	Deviation
$\rho(770)$	$1^+(1^{})$	775.26 ± 0.23	775*	fitted
$K^{*}(892)$	$\frac{1}{2}(1^{-})$	891.67 ± 0.26	966	8%
$\phi(1020)$	$0^{-}(1^{})$	1019.461 ± 0.016	1121	9%
$a_1(1260)$	$1^{-}(1^{++})$	1230 ± 40	1104	11%
$K_1(1400)$	$\frac{1}{2}(1^+)$	1403 ± 7	1433	2%
$f_1(1420)$	$0^{-1}(1^{++})$	1426.3 ± 0.9	1849	26%
$a_0(980)$	$1^{-}(0^{++})$	980 ± 20	929	5%
$K_0^*(700)$	$\frac{1}{2}(0^+)$	845 ± 17	987	16%
$f_0(1370)$	$0^{-1}(0^{++})$	1370	1032	28%
$\pi^{0,\pm}$	$0, 1^{-}(0^{-+})$	139.57039 ± 0.00017	133	5%
$K^{0,\pm}$	$\frac{1}{2}(0^{-})$	497.611 ± 0.013	498	0%

 $m_u = m_d = 2.5 MeV, m_s = 95.5 MeV$

• • • • • • • • • • • • • • • • • • • •	

CONCLUSIONS & OUTLOOK

Conclusions:

- ► A non-abelian AdS/YM that can explain QCD meson spectrum well. Outlook:
- > Apply the same method to the $SU(4) \rightarrow sp(4)$ case, link it to the composite Higgs models;
- ► Include fermion states, to complete the full theory.

