APPIYIIG ADSICCD MEHHODS TO COMPOSIIE HIGGS MODELS

With N.Evans, J. Erdmenger, W. Porod
25.07.2022, Heidelberg

Yang Liu, Universität Würzburg Special Thanks go to Studienstiftung

MOTIVATION

Composite Higgs naturally explains
> the light Higgs mass

- The large top mass

But

- Strongly coupled theory, perturbative calculations not viable in low energy regime Therefore
- Use AdS/CFT correspondence dual to a weakly coupled theory.

Composite Higgs: A Tiny Review

COMPOSITE HIGGS: A REVIEW

COMPOSITE HIGGS: A REVIEW

SM without Higgs and
Yukawa

COMPOSITE HIGGS: A REVIEW

SM without Higgs and
Yukawa

Composite Sector
With NGBs

COMPOSITE HIGGS: A REVIEW

SM without Higgs and
Yukawa

Composite Sector With NGBs

COMPOSITE HIGGS: A REVIEW

SM without Higgs and
Yukawa

Break H explicitly:
NGBs -> pNGBs (Higgs mass) Higgs potential -> induce EWSB

COMPOSITE HIGGS: A REVIEW

SM without Higgs and Yukawa

Break H explicitly:
NGBs -> pNGBs (Higgs mass) Higgs potential -> induce EWSB
> Similar to $\chi P T, G \rightarrow S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}, H \rightarrow S U\left(N_{f}\right)_{V}$

How does the dual theory look like?

THE MODEL, ABELIAN

> [J.Erdmenger, N.Evans, W.Porod, K.S.Rigatos, hep-th/2010.10279]
> Takes the form of "chiral perturbation theory", but 5D AdS
> Abelian in the sense only one D7-brane is present
> \rightarrow all (hyper)quark masses are degenerated

PROMOTE TO NON-ABELIAN

Promoting to $\mathrm{U}\left(N_{f}\right)$ non-degenerated theory
\rightarrow fields, metric, coordinates $N_{f} \times N_{f}$ matrices
But matrices' positions matter
\rightarrow use $\operatorname{STr}\left(X_{a} X_{b} \ldots X_{n}\right)=\frac{1}{n!} \sum$ (all permutations of X_{i}), but only on $D_{a} X, F_{a b},\left[X_{a}, X_{b}\right]$ ends up equiv. to Tr at $O\left(F^{2}\right)$.

LAGRANGIAN

$\mathscr{L}=\rho^{3} \operatorname{Tr}\left\{\frac{1}{r^{2}} D^{a} X^{\dagger} D_{a} X+\frac{1}{\rho^{2}}\left[\Delta m^{2} X^{\dagger} X+L \frac{\partial \Delta m^{2}}{\partial L}\left(\frac{1}{\sqrt{2 N}} \sigma i d_{N}+\sum_{k} \frac{\xi_{k}(x)}{\sqrt{2 N}} T_{k}\right)^{2}\right]+\frac{1}{g_{5}^{2}}\left(F_{L}^{2}+F_{R}^{2}\right)\right\}$
$>X=\left(L+\sigma+\xi_{i} T^{i}\right) e^{i\left(\phi+\pi_{i} T^{i}\right)}, T^{i}$: Pauli matrices. $A_{L, R}=\frac{1}{2}(V \pm A)$
> σ is the scalar singlet, ξ_{i} is the scalar triplet, $a=0, \ldots, 4=\mu, \rho$
$L=\frac{1}{\sqrt{2 N_{f}}}\left(\begin{array}{cc}L_{u} & 0 \\ 0 & L_{d}\end{array}\right)$ is the vacuum configuration
$r=\left(\begin{array}{cc}r_{u} & 0 \\ 0 & r_{d}\end{array}\right)$ is the radial coordinate, Δm^{2} and $\frac{\partial \Delta m^{2}}{\partial L}$ are also diagonal matrices defined in the same sense as r.
Δm^{2}

- $\Delta m^{2}=\Delta m^{2}(\rho)$ acts as the scalar mass,
- Vacuum UV solution: $L(\rho)=m \rho^{-\gamma}+\langle\bar{q} q\rangle \rho^{\gamma-2}, \Delta m^{2}=\gamma(\gamma-2) \sim-2 \gamma$,
> γ : anomalous dimension of the quark bilinear.
- Breitenlohner-Freedman bound: $\Delta m^{2}=-1 \rightarrow \gamma=\frac{1}{2}$,
> below this: chiral symmetry breaking.
$>\rho \frac{d \alpha}{d \rho}=-b_{0} \alpha^{2}-b_{1} \alpha^{3}, \quad \gamma=\frac{3 C_{2}(R)}{2 \pi} \alpha$, the b_{0}, b_{1} are omitted here

OVERLAPPING BRANES

- When $L_{u}=L_{d}$ the two branes overlap, 4 copies of the abelian theory.
- But if add $\mathcal{O}\left(X^{4}\right)$ contributions to the scalar potential: $\kappa\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}, \kappa$ small, \rightarrow Scalar singelt \& triplet are different
> Singlet eom $-3 \kappa L_{0}(\rho)^{2} \sigma(\rho) \rho$, triplet eom $-\kappa L_{0}(\rho)^{2} \xi_{3}(\rho) \rho$
- Can get the scalar masses splitting in the correct range.

SEPARATED BRANES, 2 FLAVOURS

> $L_{u} \neq L_{d}$

- The off diagonal ones have coupled eoms, mixing $\sim\left(L_{d}-L_{u}\right)$, can be ignored
- E.g. Vector:

$$
\partial_{\rho}\left(\rho^{3} \partial_{\rho} V_{1}^{\mu}\left(x^{\mu}, \rho\right)\right)+\rho^{3}\left(\frac{1}{r_{u}^{4}}+\frac{1}{r_{d}^{4}}\right)\left[M_{V_{1}}^{2}-\frac{g_{5}^{2}}{4}\left(L_{u}(\rho)-L_{d}(\rho)\right)^{2}\right] V_{1}^{\mu}\left(x^{\mu}, \rho\right)=0
$$

- Impose boundary conditions:

$$
f(I R)=1, \partial_{\rho} f(I R)=0, f(U V)=0
$$

> Shoot from IR and solve for the masses s.t. the field f vanished in the UV \rightarrow get triplet masses

SEPARATED BRANES, 2 FLAVOURS

The diagonal ones are decoupled in states that are not mass eigenstates in $\operatorname{SU}(2)$ Impose plane-wave ansatz for the singlet and triplet (vector as an example)

$$
V_{0,3}(x, \rho)=V_{0,3}(\rho) e^{i k x}, \quad \partial_{\mu} \partial^{\mu} V_{0,3}(x, \rho)=M_{V_{0,3}}^{2} V_{0,3}(x, \rho)
$$

Eoms are now

$$
\begin{aligned}
& V_{0}: 2 \partial_{\rho}\left(\rho^{3} \partial_{\rho} V_{0}\left(x^{\mu}, \rho\right)\right)+\rho^{3}\left(\frac{1}{r_{u}^{4}}+\frac{1}{r_{d}^{4}}\right) M_{V_{0}}^{2} V_{0}\left(x^{\mu}, \rho\right)+\rho^{3}\left(\frac{1}{r_{u}^{4}}-\frac{1}{r_{d}^{4}}\right) M_{V_{3}}^{2} V_{3}\left(x^{\mu}, \rho\right)=0 \\
& V_{3}: 2 \partial_{\rho}\left(\rho^{3} \partial_{\rho} V_{3}\left(x^{\mu}, \rho\right)\right)+\rho^{3}\left(\frac{1}{r_{u}^{4}}+\frac{1}{r_{d}^{4}}\right) M_{V_{3}}^{2} V_{3}\left(x^{\mu}, \rho\right)+\rho^{3}\left(\frac{1}{r_{u}^{4}}-\frac{1}{r_{d}^{4}}\right) M_{V_{0}}^{2} V_{0}\left(x^{\mu}, \rho\right)=0 .
\end{aligned}
$$

SEPARATED BRANES, 2 FLAVOURS

Impose boundary conditions

$$
\begin{gathered}
\text { diagonal : }\left.\partial_{\rho}\left(V_{0}\left(x^{\mu}, \rho\right)+V_{3}\left(x^{\mu}, \rho\right)\right)\right|_{\rho_{u}}=0,\left.\partial_{\rho}\left(V_{0}\left(x^{\mu}, \rho\right)-V_{3}\left(x^{\mu}, \rho\right)\right)\right|_{\rho_{d}}=0 \\
{\left[V_{0}\left(x^{\mu}, \rho\right)+V_{3}\left(x^{\mu}, \rho\right)\right]_{\rho_{u}}=\alpha,\left[V_{0}\left(x^{\mu}, \rho\right)-V_{3}\left(x^{\mu}, \rho\right)\right]_{\rho_{d}}=\beta}
\end{gathered}
$$

Shoot from IR $\left(\rho_{u}, \rho_{d}\right)$, and feed the triplet mass (from off-diagonal) to $M_{V_{3}}$

$$
M_{V_{3}}=M_{V_{1}}
$$

demand the masses found should satisfy

$$
\frac{M_{V_{0}}}{M_{V_{3}}}=: \frac{M_{\omega}}{M_{\rho}}
$$

Solve a boundary condition pair (α, β) : intrinsic, apply to scalar, axial-vector and π

SEPARATED BRANES, 2 FLAVOURS

Observables	$I^{G}\left(J^{P C}\right)$	QCD $(\mathrm{MeV})^{2}$	non-Abelian AdS/SU(3) (MeV)	Deviation
$M_{\omega(782)}$	$0^{-}\left(1^{--}\right)$	782.66 ± 0.13	783^{*}	fitted
$M_{\rho(770)}$	$1^{+}\left(1^{--}\right)$	775.26 ± 0.23	775^{*}	fitted
$M_{f_{0}(980)}$	$0^{+}\left(0^{++}\right)$	990 ± 20	998	1%
$M_{a_{0}(980)}$	$1^{-}\left(0^{++}\right)$	980 ± 20	999	2%
$M_{f_{1}(1285)}$	$0^{-}\left(1^{+-}\right)$	1281.9 ± 0.5	1234	4%
$M_{a_{1}(1260)}$	$1^{+}\left(1^{+-}\right)$	1230 ± 40	1197	3%
$M_{\pi^{0}}$	$1^{-}\left(0^{-+}\right)$	134.9768 ± 0.0005	146	8%
$M_{\pi^{ \pm}}$	$1^{-}\left(0^{-}\right)$	139.57039 ± 0.00018	145	4%

$$
m_{u}=2.3 \mathrm{MeV} \text { and } m_{d}=4.6 \mathrm{MeV}
$$

SEPARATED BRANES, 3 FLAVOUR

The flavour group is $U(3)$
Lagrangian, set-up same as 2-flavour case
Simply extended to 3-flavour: $m_{u}=m_{d}<m_{s}$
Eoms grouped in 3 classes:

$$
\begin{array}{cl}
(u, 1,2,3): u \bar{u}, u \bar{d}, d \bar{d} ; \quad & (4,5,6,7): u \bar{s}, d \bar{s} ; \quad s: s \bar{s} \\
f_{u}:=\frac{\sqrt{2}}{\sqrt{3}} f_{0}+\frac{1}{\sqrt{3}} f_{8}, \quad f_{s}:=\frac{\sqrt{2}}{\sqrt{3}} f_{0}-\frac{2}{\sqrt{3}} f_{8} .
\end{array}
$$

SEPARATED BRANES, 3 FLAVOUR

Vectors \& scalars: well defined meson states, ideally mixed, phy. states: $\underline{S U(2)}$ singlet and $\bar{s} \bar{s} ;$
Axial-vectors: not so well defined, but might follow the same structure
Pseudo-scalars: slightly mixed, phy. states: $\underline{\mathrm{SU}(3) \text { singlet and 8th component of }}$ the octet: η^{\prime} and η.

Can't use the diagonal procedure to get η and η^{\prime} masses.

SEPARATED BRANES, 3 FLAVOUR

Observables	$I^{G}\left(J^{P C}\right)$	QCD (MeV)	$N_{f}=3$ Numerics (MeV)	Deviation
$\rho(770)$	$1^{+}\left(1^{--}\right)$	775.26 ± 0.23	775^{*}	fitted
$K^{*}(892)$	$\frac{1}{2}\left(1^{-}\right)$	891.67 ± 0.26	966	8%
$\phi(1020)$	$0^{-}\left(1^{--}\right)$	1019.461 ± 0.016	1121	9%
$a_{1}(1260)$	$1^{-}\left(1^{++}\right)$	1230 ± 40	1104	11%
$K_{1}(1400)$	$\frac{1}{2}\left(1^{+}\right)$	1403 ± 7	1433	2%
$f_{1}(1420)$	$0^{+}\left(1^{++}\right)$	1426.3 ± 0.9	1849	26%
$a_{0}(980)$	$1^{-}\left(0^{++}\right)$	980 ± 20	929	5%
$K_{0}^{*}(700)$	$\frac{1}{2}\left(0^{+}\right)$	845 ± 17	987	16%
$f_{0}(1370)$	$0^{+}\left(0^{++}\right)$	1370	1032	28%
$\pi^{0, \pm}$	$0,1^{-}\left(0^{-+}\right)$	139.57039 ± 0.00017	133	5%
$K^{0, \pm}$	$\frac{1}{2}\left(0^{-}\right)$	497.611 ± 0.013	498	0%

$$
m_{u}=m_{d}=2.5 \mathrm{MeV}, m_{s}=95.5 \mathrm{MeV}
$$

CONCLUSIONS \& OUTLOOK

Conclusions:

- A non-abelian AdS/YM that can explain QCD meson spectrum well.

Outlook:
> Apply the same method to the $S U(4) \rightarrow s p(4)$ case, link it to the composite Higgs models;
> Include fermion states, to complete the full theory.

THANKS FOR YOUR ATIENIION!

