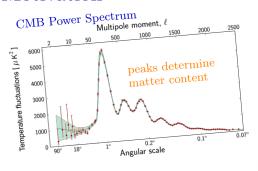
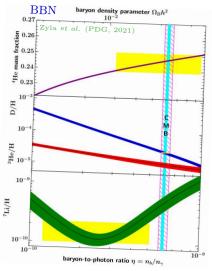


Electroweak Baryogenesis and Dark Matter with an Inert Doublet

Sven Fabian


Max-Planck-Institut für Kernphysik


 $July\ 26th,\ 2022-PASCOS\ 2022$

in collaboration with Florian Goertz and María Dias

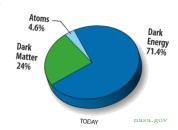
Motivation

What is the nature of dark matter?

What has caused the great excess of matter over antimatter?

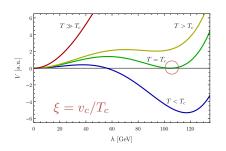

Standard Model cannot explain DM or baryon asymmetry

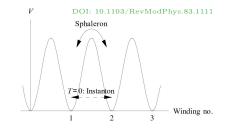
Background – Dark Matter


- bullet cluster: small interaction cross section between DM and 'ordinary' matter
- ▶ many possible DM candidates:
 - \rightarrow focus on WIMPs

chandra.harvard.edu

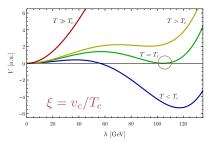
- 'ordinary' matter only a small fraction of entire energy content
- relic abundance after freeze-out:

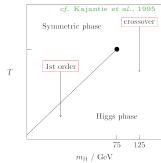

$$\Omega_{\rm DM} h^2 = 0.1200(12)$$



Background – Electroweak Baryogenesis

- Sakharov conditions:
 - (1) violation of baryon number conservation
 - (2) C and CP violation
 - (3) departure from thermal equilibrium \rightarrow scalar potential
- ► B violation induced by the Adler-Bell-Jackiw anomaly
 - SU(2) vacuum structure comprises degenerate vacua
 - $\Delta (B+L) \neq 0$ whereas B-L preserved
 - sphalerons strongly suppressed in broken phase





Background – Electroweak Baryogenesis

- Sakharov conditions:
 - (1) violation of baryon number conservation
 - (2) C and CP violation
 - (3) departure from thermal equilibrium \rightarrow scalar potential
- related problems of the SM
 - lack of sufficient CP violation
 - SM Higgs boson too heavy

SM cannot be the final answer!

Inert Doublet Model

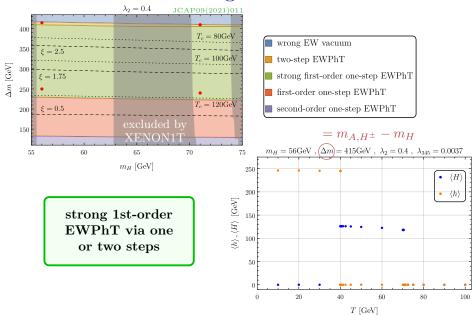
further reading: hep-ph/0612275, 1204.4722, 1504.05949, 1508.01671, 1612.00511, \dots

▶ extended scalar sector of the SM:

$$H_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi^+ \\ h + i\phi \end{pmatrix}$$
 , $H_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}H^+ \\ H + iA \end{pmatrix}$

▶ DM particle H stable for \mathbb{Z}_2 symmetry

 \mathbb{Z}_2 symmetry: $H_1 \to H_1$ $H_2 \to -H_2$


$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \left(\lambda_3 |H_1|^2 |H_2|^2 + \left(\lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[\left(H_1^{\dagger} H_2 \right)^2 + \text{h.c.} \right] \right]$$

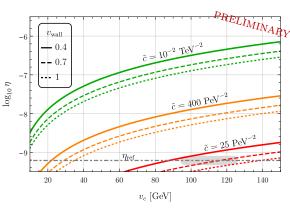
Higgs-portal coupling

• free parameters: $\{\lambda_2, \lambda_{345}, m_H, m_{H^{\pm}}, m_A\}$ $= \lambda_3 + \lambda_4 + \lambda_5$

EWPhT in low-mass regime

CP violation with inert doublet

cf. Dine et~al.~(1991)


▶ dimension-6 operator:

$$=\tilde{\lambda}/\Lambda^2$$

$$\mathcal{L}_{\mathrm{C\!/\!P}} = \left(\widetilde{c} \left| H_2 \right|^2 W_{\mu\nu}^a \widetilde{W}^{a,\mu\nu} = \widetilde{c} \ j_B^\mu \ \partial_\mu \left| H_2 \right|^2$$

 \rightarrow baryon asymmetry $j_B^0 \sim \tilde{c} \ v_c^2 \ T_c^3/v_{\rm wall}$

- unbroken phase: minimum of free energy at $j_B^0 = 0$
- PhT leads to shift of minimum
- ightharpoonup sphalerons drive j_B^0 to new minimum

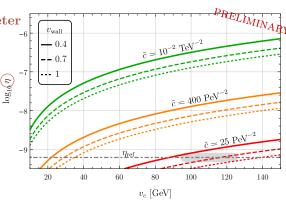
CP violation with inert doublet

cf. Dine et~al.~(1991)

(DOI: 10.1016/0370-2693(91)91905-B)

▶ dimension-6 operator:

$$=\tilde{\lambda}/\Lambda^2$$


$$\mathcal{L}_{\mathrm{C\!/\!P}} = \left(\widetilde{c} \left| H_2 \right|^2 W^a_{\mu\nu} \widetilde{W}^{a,\mu\nu} = \widetilde{c} \ j_B^{\mu} \ \partial_{\mu} \left| H_2 \right|^2$$

 \rightarrow baryon asymmetry $j_B^0 \sim \tilde{c} \ v_c^2 \ T_c^3/v_{\text{wall}}$

asymmetry parameter

$$\eta = \frac{n_B - \bar{n}_B}{n_\gamma}$$

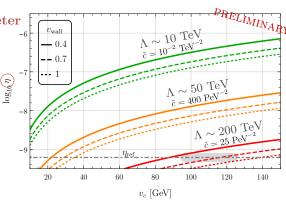
- unbroken phase: minimum of free energy at $j_B^0 = 0$
- ► PhT leads to shift of minimum
- ightharpoonup sphalerons drive j_B^0 to new minimum

CP violation with inert doublet

cf. Dine et~al.~(1991)

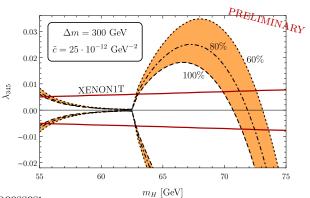
▶ dimension-6 operator:

$$=\tilde{\lambda}/\Lambda^2$$

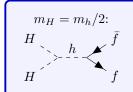

$$\mathcal{L}_{\mathrm{C\!/\!P}} = \left(\widetilde{c} \left| H_2 \right|^2 W^a_{\mu\nu} \widetilde{W}^{a,\mu\nu} = \widetilde{c} \ j^\mu_B \ \partial_\mu \left| H_2 \right|^2$$

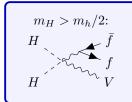
 \rightarrow baryon asymmetry $j_B^0 \sim \tilde{c} \ v_c^2 \ T_c^3/v_{\text{wall}}$

asymmetry parameter


$$\eta = \frac{n_B - \bar{n}_B}{n_\gamma}$$

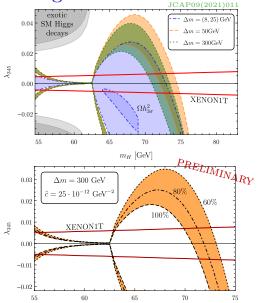
- unbroken phase: minimum of free energy at $j_B^0 = 0$
- ► PhT leads to shift of minimum
- ightharpoonup sphalerons drive j_B^0 to new minimum




DM results for low-mass regime

dominant processes:

$$\begin{array}{c}
m_{H} < m_{h}/2: \\
H \\
\downarrow > \stackrel{h^{*}}{-} \stackrel{f}{\checkmark} \\
f
\end{array}$$

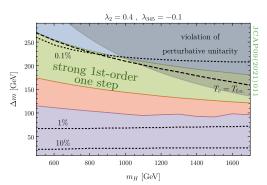


DM results for low-mass regime

- new operator has minor impact on DM abundance
- → results from our previous studies apply to this extension of the IDM

Viable parameter space in low-mass regime!

 m_H [GeV]

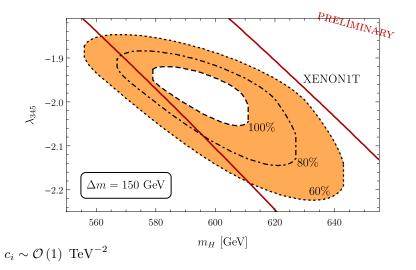


DM and EWPhT in high-mass regime

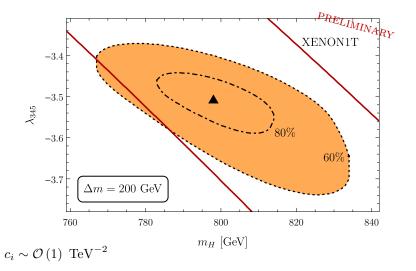
- large Δm required for strong EWPhT

 BUT small Δm necessary for a significant DM abundance
- ▶ no 2-step EWPhT in high-mass regime
- \rightarrow new source of CP violation required!

▶ alleviate this problem by introducing further operators:

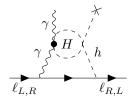

$$\mathcal{L}^{(6)} \supset c_1 |H_1|^2 |D_{\mu}H_2|^2 + c_2 |H_2|^2 |D_{\mu}H_1|^2$$

$$+ \left[c_3 H_1^{\dagger} H_2 (D_{\mu}H_1)^{\dagger} D^{\mu} H_2 + c_4 H_1^{\dagger} H_2 (D_{\mu}H_2)^{\dagger} D^{\mu} H_1 + \text{h.c.} \right]$$



DM results for high-mass regime

DM results for high-mass regime


466

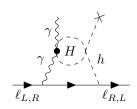
Conclusions & Outlook

- ▶ Goal: eliminate shortcomings of vanilla IDM w.r.t. *CP* violation
 - \rightarrow low-mass regime: baryogenesis & DM via

$$\mathcal{L}_{\text{C/P}} = \frac{\tilde{\lambda}}{\Lambda^2} |H_2|^2 W_{\mu\nu}^a \widetilde{W}^{a,\mu\nu} \text{ with } \Lambda \sim 20 \text{ TeV for } \tilde{\lambda} \sim \mathcal{O}\left(10^{-2}\right)$$

- \rightarrow high-mass regime: DM & strong 1st-order EWPhT
- ▶ strong 1st-order EWPhT testable gravitational wave signatures?
- ▶ EDM experiments for probing the operator

Conclusions & Outlook


- ▶ Goal: eliminate shortcomings of vanilla IDM w.r.t. *CP* violation
 - \rightarrow low-mass regime: baryogenesis & DM via

$$\mathcal{L}_{\text{C/P}} = \frac{\tilde{\lambda}}{\Lambda^2} |H_2|^2 W_{\mu\nu}^a \widetilde{W}^{a,\mu\nu} \text{ with } \Lambda \sim 20 \text{ TeV for } \tilde{\lambda} \sim \mathcal{O}\left(10^{-2}\right)$$

- \rightarrow high-mass regime: DM & strong 1st-order EWPhT
- ▶ strong 1st-order EWPhT testable gravitational wave signatures?
- ▶ EDM experiments for probing the operator

Thanks for your attention

Feel free to contact me for discussions: fabian@mpi-hd.mpg.de

Sources for images

Sec. Motivation:

► CMB

https://sci.esa.int/s/wRVmdjw

Sec. Background - Dark Matter:

energy budget

https://map.gsfc.nasa.gov/universe/uni_matter.html

bullet cluster

https://chandra.harvard.edu/photo/2006/1e0657/more.html

Last access: July 21st, 2022

