Z_2 Non-Restoration and Composite Higgs: Singlet-Assisted Baryogenesis w/o Topological Defects

Aika Marie Tada

25th July 2022 – PASCOS at MPIK Heidelberg

Based on 2112.12087 by Andrei Angelescu, Florian Goertz, AT

► Hierarchy Problem (HP), flavour hierarchy puzzle, . . .

- ► Hierarchy Problem (HP), flavour hierarchy puzzle, ...
- Baryon Asymmetry in the Universe (BAU): Why do we exist?

- ▶ Hierarchy Problem (HP), flavour hierarchy puzzle, . . .
- Baryon Asymmetry in the Universe (BAU): Why do we exist?
 - No antimatter in cosmic rays

- Hierarchy Problem (HP), flavour hierarchy puzzle, . . .
- Baryon Asymmetry in the Universe (BAU): Why do we exist?
 - No antimatter in cosmic rays
 - No radiation from annihilation between matter and antimatter regions

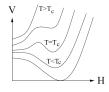
- Hierarchy Problem (HP), flavour hierarchy puzzle, . . .
- Baryon Asymmetry in the Universe (BAU): Why do we exist?
 - No antimatter in cosmic rays
 - ▶ No radiation from annihilation between matter and antimatter regions
- ▶ Initial preference for matter would be washed out by inflation
 ⇒ need to create imbalance by Baryogenesis

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium

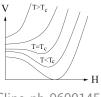
- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - ⇒ SM does not suffice!

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - ⇒ SM does not suffice!
 - need strong first order phase transition (SFOPhT)



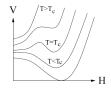
2nd order PT



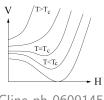
Cline ph-0609145

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - \Rightarrow SM does not suffice!
 - need strong first order phase transition (SFOPhT)
 - e.g., SM + scalar singlet S via spontaneous $Z_2: S \leftrightarrow -S$ breaking (2-step PT): $\langle S \rangle = +w$ and -w populate equally

1st order PT

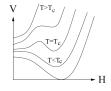


2nd order PT

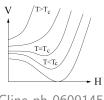


Cline ph-0609145

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - ⇒ SM does not suffice!
 - need strong first order phase transition (SFOPhT)
 - e.g., SM + scalar singlet S via spontaneous $Z_2: S \leftrightarrow -S$ breaking (2-step PT): $\langle S \rangle = +w$ and -w populate equally \Rightarrow no asymmetry,



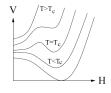
2nd order PT



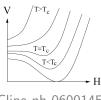
Cline ph-0609145

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - ⇒ SM does not suffice!
 - need strong first order phase transition (SFOPhT)
 - e.g., SM + scalar singlet S via spontaneous $Z_2: S \leftrightarrow -S$ breaking (2-step PT): $\langle S \rangle = +w$ and -w populate equally
 - ⇒ no asymmetry,

 domain wall problem

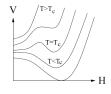


2nd order PT

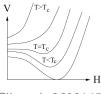


Cline ph-0609145

- Sakharov conditions
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Departure from thermal equilibrium
- ► Elektroweak Baryogenesis (EWBG)
 - ⇒ SM does not suffice!
 - need strong first order phase transition (SFOPhT)
 - e.g., SM + scalar singlet S via spontaneous $Z_2: S \leftrightarrow -S$ breaking (2-step PT): $\langle S \rangle = +w$ and -w populate equally \Rightarrow no asymmetry,
 - ⇒ no asymmetry, domain wall problem
 - ► start from broken phase



2nd order PT



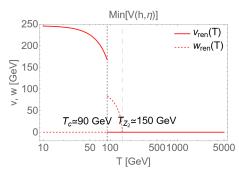
Cline ph-0609145

Z_2 Non-Restoration: High T effective Potential

EFT considering $D \le 4$ operators only: Z_2 SSB only

$$V_{0}(h,S) = \frac{\mu_{h}^{2}}{2}h^{2} + \frac{\lambda_{h}}{4}h^{4} + \frac{\mu_{S}^{2}}{2}S^{2} + \frac{\lambda_{S}}{4}S^{4} + \frac{\lambda_{hS}}{2}h^{2}S^{2}$$

$$V_{T}(h,S) = \frac{T^{2}}{2}\left(c_{h}h^{2} + \left(\frac{\lambda_{hS}}{3} + \frac{\lambda_{S}}{4}\right)S^{2}\right)$$



Spontaneous Z_2 breaking: $(0,0) \rightarrow (w_{ren},0) \rightarrow (0,v_{ren})$

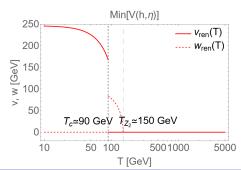
AA, FG, AT 2021 $\Lambda_{NP} = 1.5 \text{ TeV}, \lambda_S = -0.15,$ $\lambda_{hS} = 0.1, m_S = 75 \text{ GeV}$

Z_2 Non-Restoration: High T effective Potential

EFT adding D > 4 operators: Z_2 SNR possible

$$V_0(h, S) = \frac{\mu_h^2}{2}h^2 + \frac{\lambda_h}{4}h^4 + \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \frac{\lambda_{hS}}{2}h^2S^2 + \frac{S^6}{\Lambda_{NP}^2}$$

$$V_T(h, S) = \frac{T^2}{2}\left(c_hh^2 + \left(\frac{\lambda_{hS}}{3} + \frac{\lambda_S}{4}\right)S^2\right) + \frac{5T^2}{4\Lambda_{NP}^2}S^4$$



Spontaneous Z_2 breaking: $(0,0) \rightarrow (w_{ren},0) \rightarrow (0,v_{ren})$

AA, FG, AT 2021

$$\Lambda_{\mathsf{NP}} = 1.5\,\mathsf{TeV}$$
 , $\lambda_{\mathcal{S}} = -0.15$,

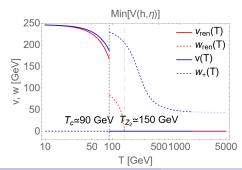
$$\lambda_{hS}=0.1,\ m_S=75\,\mathrm{GeV}$$

Z_2 Non-Restoration: High T effective Potential

EFT adding D > 4 operators: Z_2 SNR possible

$$V_{0}(h,S) = \frac{\mu_{h}^{2}}{2}h^{2} + \frac{\lambda_{h}}{4}h^{4} + \frac{\mu_{S}^{2}}{2}S^{2} + \frac{\lambda_{S}}{4}S^{4} + \frac{\lambda_{hS}}{2}h^{2}S^{2} + \frac{S^{6}}{\Lambda_{NP}^{2}}$$

$$V_{T}(h,S) = \frac{T^{2}}{2}\left(c_{h}h^{2} + \left(\underbrace{\frac{\lambda_{hS}}{3} + \frac{\lambda_{S}}{4}}\right)S^{2}\right) + \frac{5T^{2}}{4\Lambda_{NP}^{2}}S^{4}$$



Spontaneous Z_2 breaking:

 $(0,0)\rightarrow (w_{ren},0)\rightarrow (0,v_{ren})$

 Z_2 SNR:

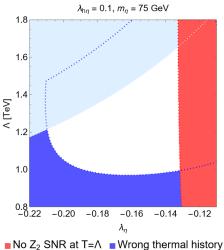
$$(w_+,0)\to(0,v)$$

AA, FG, AT 2021

$$\Lambda_{\rm NP} = 1.5 \, {\rm TeV}, \lambda_{\rm S} = -0.15.$$

$$\lambda_{hS} = 0.1, \ m_S = 75 \, \text{GeV}$$

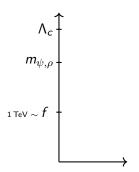
Z₂ SNR: Constraints



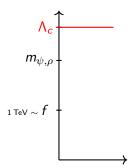
■ No Z₂ SNR at T=Λ ■ Wrong thermal history ■ Improper minima at T<50 GeV

AA, FG, AT 2021

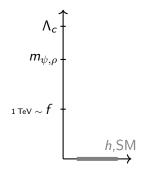
► Higgs h as composite of new confining force $\sim \pi$ in QCD



- ▶ Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c

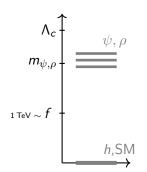


- ▶ Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry \mathcal{G} sponteneously broken to \mathcal{H} by $\langle \bar{\Psi}\Psi \rangle \neq 0$ below Λ_c
 - \blacktriangleright h as Nambu-Goldstone-Boson, V(h) = 0



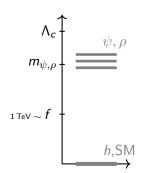
2112.12087

- ightharpoonup Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c
 - \blacktriangleright h as Nambu-Goldstone-Boson, V(h)=0
 - ightharpoonup massive resonances ψ, ρ

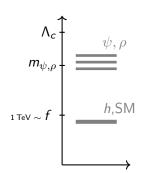


2112.12087

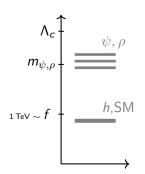
- ightharpoonup Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c
- Explicitly break G by interaction with SM fermions and gauge bosons



- ightharpoonup Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c
- Explicitly break G by interaction with SM fermions and gauge bosons
 - ▶ h as PNGB, $V(h) \neq 0$

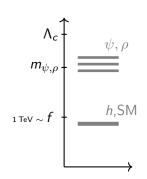


- ightharpoonup Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c
- Explicitly break G by interaction with SM fermions and gauge bosons
 - ▶ h as PNGB, $V(h) \neq 0$
 - \triangleright corrections to m_h cut off by Λ_c

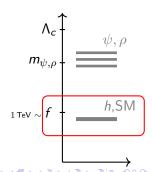


- ightharpoonup Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry $\mathcal G$ sponteneously broken to $\mathcal H$ by $\langle \bar \Psi \Psi \rangle \neq 0$ below Λ_c
- Explicitly break G by interaction with SM fermions and gauge bosons
 - ▶ h as PNGB, $V(h) \neq 0$
 - \triangleright corrections to m_h cut off by Λ_c

Solves Hierarchy Problem & Higgs Potential is calculable!



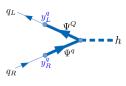
- ▶ Higgs h as composite of new confining force $\sim \pi$ in QCD
- Assume global symmetry ${\cal G}$ sponteneously broken to ${\cal H}$ by $\langle \bar{\Psi}\Psi \rangle \neq 0$ below Λ_c
- Explicitly break G by interaction with SM fermions and gauge bosons
 - ▶ h as PNGB, $V(h) \neq 0$
 - ightharpoonup corrections to m_h cut off by Λ_c
- ► $SO(6)/SO(5) \Rightarrow 4+1$ Goldstone dof
 - complex h doublet
 - scalar singlet S



V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

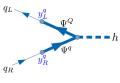


FG 2020

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

physical quarks as mixtures of SM elementary and composite particles

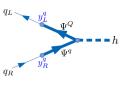


FG 2020

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

- physical quarks as mixtures of SM elementary and composite particles
- "compositeness" determines fermion mass

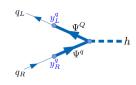


FG 2020

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

- physical quarks as mixtures of SM elementary and composite particles
- "compositeness" determines fermion mass
- consider only top quark contribution here

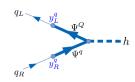


FG 2020

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

- physical quarks as mixtures of SM elementary and composite particles
- "compositeness" determines fermion mass
- consider only top quark contribution here
- solves flavour hierarchy puzzle



FG 2020

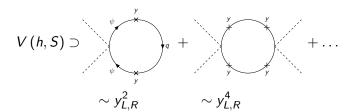
(ロ) (리) (리) (리) (리) (리)

Constructing V(h, S) - 1-loop approximation

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

1-loop Coleman-Weinberg Potential:

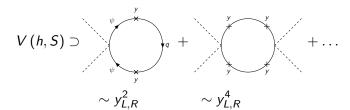


Constructing V(h, S) - 1-loop approximation

- V(h, S) must arise from interactions breaking SO(6) explictly: radiatively by interactions with SM elementary particles
- Partial Compositeness: assume linear mixing between SM and composite particles,

$$\mathcal{L} \supset f\left(y_L^q \bar{q}_L \psi_R^Q + y_R^q \bar{q}_R \psi_L^q\right)$$

1-loop Coleman-Weinberg Potential:



 \Rightarrow Sensitive to nature of ψ and strength of $y_{L,R}$

Choosing the Right Embedding

- V sensitive to what SO(6) representation the composite resonances transform in
- ▶ analyzed $\psi_L(\psi_R)$ in (1,) **6**, **15**, **20**′ of SO(6)
- ightharpoonup considerations up to D=4 terms: see e.g. DeCurtis2019, Bian2019, Xie2020....

$$\begin{split} V &= \underbrace{\frac{\textit{N}_{\textit{c}}\textit{m}_{\psi}^{4}}{16\pi^{2}}}_{\text{dim factor}} \left(\frac{\textit{y}_{\textit{L},\textit{R}}}{\textit{g}_{\textrm{UV}}}\right)^{\#2q} \underbrace{\textit{c}_{\textit{nm}}}_{\overset{1}{\sim}\mathcal{O}(1)} \left(\frac{\textit{h}}{\textit{f}}\right)^{2n} \left(\frac{\textit{S}}{\textit{f}}\right)^{2m} \\ &\stackrel{!}{=} \frac{\mu_{\textit{h}}^{2}}{2}\textit{h}^{2} + \frac{\lambda_{\textit{h}}}{4}\textit{h}^{4} + \frac{\mu_{\textit{S}}^{2}}{2}\textit{S}^{2} + \frac{\lambda_{\textit{S}}}{4}\textit{S}^{4} + \frac{\lambda_{\textit{hS}}}{2}\textit{h}^{2}\textit{S}^{2} + \frac{\textit{S}^{6}}{\Lambda_{\textrm{NP}}^{2}} \end{split}$$

V(h, S) terms of interest obtained to respective order $\mathcal{O}\left(\frac{y_{L,R}^2}{g_{\text{IIV}}^2} \sim \frac{y_{L,R}^6}{g_{\text{IIV}}^6}\right)$.

		1_R	6 _R	15 _R	$20'_{R}$
6 _L	h^{2} h^{4} S^{2} S^{4} S^{6} $h^{2}S^{2}$	No S-pot	2 nd 4 th 2 nd 4 th 6 th 2 nd	No S-pot	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
15 _{AL}	h ² h ⁴ S ² S ⁴ S ⁶ h ² S ²	No top mass	No CPv	2 nd 4 th 2 nd 4 th 6 th 4 th	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
20 ′ _L	h ² h ⁴ S ² S ⁴ S ⁶ h ² S ²	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 2 nd 4 th 2 nd

V(h, S) terms of interest obtained to respective order $\mathcal{O}\left(\frac{y_{L,R}^2}{g_{IIV}^2} \sim \frac{y_{L,R}^6}{g_{IIV}^6}\right)$.

		1_R	6 _R	15 _R	$20'_{R}$
6,	h^{2} h^{4} S^{2} S^{4} S^{6} $h^{2}S^{2}$	No S-pot	2 nd 4 th 2 nd 4 th 6 th 2 nd	No S-pot	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
15 _{AL}	h ² h ⁴ S ² S ⁴ S ⁶ h ² S ²	No top mass	No CPv	2 nd 4 th 2 nd 4 th 6 th 4 th	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
20' _L	h ² h ⁴ S ² S ⁴ S ⁶ h ² S ²	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 2 nd 4 th 2 nd

V(h, S) terms of interest obtained to respective order $\mathcal{O}\left(\frac{y_{L,R}^2}{g_{DV}^2} \sim \frac{y_{L,R}^6}{g_{DV}^6}\right)$.

$$\Rightarrow S^6$$
 term at $\mathcal{O}\left(\frac{y_{L,R}^4}{g_{UV}^4}\right)$ & sizable CPv and top mass terms can be generated.

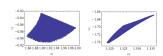
		1_R	6 _R	15 _R	20 ′ _R
	h ²		2 nd		2 nd
	h ⁴		4 th		2 nd
	<i>S</i> ²	No	2 nd	No	2 nd
	S ⁴		4 th		2 nd
6 _L	S ⁶	S-pot	6 th	S-pot	4 th
_	h ² S ²		2 nd		2 nd
	h ²			2 nd	2 nd
	h ⁴			4 th	2 nd
	S ²	No		2 nd	2 nd
	S ⁴	top	No	4 th	2 nd
15 _A $_L$	S ⁶	mass	CPv	6 th	4 th
	h ² S ²			4 th	2 nd
	h ²	2 nd	2 nd	2 nd	2 nd
	h ⁴	2 nd	2 nd	2 nd	2 nd
	<i>S</i> ²	2 nd	2 nd	2 nd	2 nd
	S ⁴	4 th	4 th	4 th	2 nd
20_{L}^{\prime}	S ⁶	6 th	6 th	6 th	4 th
L	h ² S ²	2nd	2nd	2nd	2nd

V(h, S) terms of interest obtained to respective order $O\left(\frac{y_{L,R}^2}{y_{L,R}^2}\right)$

$$\mathcal{O}\left(\frac{y_{L,R}^2}{g_{\mathsf{UV}}^2} \sim \frac{y_{L,R}^6}{g_{\mathsf{UV}}^6}\right)$$
.

$$\Rightarrow S^6 \text{ term at } \mathcal{O}\left(\frac{y_{t,R}^4}{g_{\text{UV}}^4}\right) \\ \& \text{ sizable CPv and top mass} \\ \text{terms can be generated}.$$

Can be matched to SNR EFT with $c_{nm} \sim \mathcal{O}(1)$, fulfilling all conditions for EWBG.



		1 _R	6 _R	15 _R	20 ′ _R
6 _L	h^{2} h^{4} S^{2} S^{4} S^{6} $h^{2}S^{2}$	No S-pot	2 nd 4 th 2 nd 4 th 6 th 2 nd	No S-pot	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
15 _A <i>L</i>	h ² h ⁴ S ² S ⁴ S ⁶ h ² S ²	No top mass	No CPv	2 nd 4 th 2 nd 4 th 6 th 4 th	2 nd 2 nd 2 nd 2 nd 4 th 2 nd
20′_	h^{2} h^{4} S^{2} S^{4} S^{6} $h^{2}S^{2}$	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 4 th 6 th 2 nd	2 nd 2 nd 2 nd 2 nd 4 th 2 nd

Conclusion

- ightharpoonup investigated thermal history of Higgs + S model with D > 4 terms
- \blacktriangleright starting from a Z_2 -broken phase in the early universe avoids domain wall problem while allowing for a SFOEWPhT
- ▶ UV completion by SO(6)/SO(5) composite Higgs model \rightarrow accounts for HP and flavour hierarchies
- V(h, S) structure calculated, including $D \ge 6$ terms
- ▶ models with t_R embedded in **20**′ of SO(6) yield large S^6 term
 - → matched to the SNR scenario, may account for the correct baryon asymmetry in the universe.

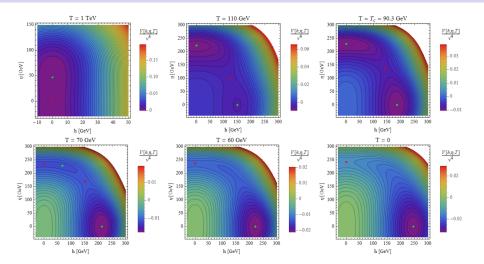
Outlook

- Could SU(6) Gauge-Higgs Grand Unification include a EWBG Mechanism?
 - ▶ holographic to SU(6)/SU(5) CH model
 - usual GUT BG suffers from sphaleron washout, low testability, high reheating temperature
 - lacktriangle unclear if usual GUT BG would even work ightarrow consider EWBG instead
- PNGB singlet as dark matter
- ightharpoonup Cases with V(S)=0 may have interesting implications

Thank you for Your Attention!

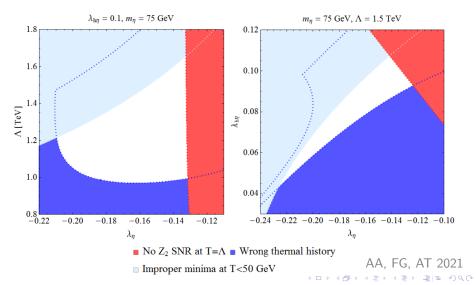
Feel free to contact me at aika.tada@mpi-hd.mpg.de

Z_2 Non-Restoration: Thermal Evolution

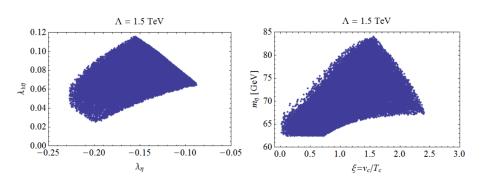


 $\Lambda_{\rm NP} = 1.5 \, {\rm TeV}, \; \lambda_S = -0.15, \; \lambda_{hS} = 0.1, \; m_S = 75 \, {\rm GeV}$

Z_2 SNR: Constraints



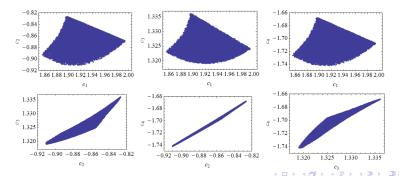
Z_2 SNR: Parameter Space



AA, FG, AT 2021

Matching to SNR Scenario

$$V = \frac{\mu_h^2}{2}h^2 + \frac{\lambda_h}{4}h^4 + \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \frac{\lambda_{hS}}{2}h^2S^2 + \frac{S^6}{\Lambda_{NP}^2}$$
$$\stackrel{!}{=} \frac{N_c m_{\psi}^4}{16\pi^2} \left(\frac{y_{L,R}}{g_{UV}}\right)^{\#q} c_{nm} \left(\frac{h}{f}\right)^{2n} \left(\frac{S}{f}\right)^{2m}$$



Constructing the PNGB Potential

Embed q_L , t_R in full multiplets of SO(6) via spurions:

$$Q_L = \Lambda_L^{\alpha} q_{L,\alpha}, \qquad Q_R = \Lambda_R t_R.$$

Dress the spurions with Goldstone matrix U(h, S):

$$(\Lambda')_{66} = (U^T)_{6I}(U^T)_{6J}\Lambda^{IJ}, \qquad I, J = 1, \dots, 6,$$

 $(\Lambda')_{a6} = (U^T)_{aI}(U^T)_{6J}\Lambda^{IJ}, \qquad a, b = 1, \dots, 5$

In 1-loop approximation to LO in Spurions via CCWZ formalism:

$$V_{LO}(h, S) = \frac{N_c m_{\psi}^4}{16\pi^2} \left(\frac{y_L^2}{g_{\psi}^2} c_1 | \left(\Lambda_L^{\alpha \prime} \right)_{66} |^2 + \frac{y_L^2}{g_{\psi}^2} c_2 | \left(\Lambda_L^{\alpha \prime} \right)_{a6} |^2 + \frac{y_R^2}{g_{\psi}^2} c_3 | \left(\Lambda_R^{\prime} \right)_{66} |^2 + \frac{y_R^2}{g_{\psi}^2} c_4 | \left(\Lambda_R^{\prime} \right)_{a6} |^2 \right)$$

Decomposition of 20' of SO(6) under SM gauge group

$$\begin{split} \mathbf{20'_{2/3}} & \overset{SO(5) \times U(1)_X}{\longrightarrow} \mathbf{14_{2/3}} \oplus \mathbf{5_{2/3}} \oplus \mathbf{1_{2/3}} \\ & \overset{SO(4) \times U(1)_X}{\longrightarrow} \left[\mathbf{9_{2/3}} \oplus \mathbf{4_{2/3}} \oplus \mathbf{1_{2/3}} \right] \oplus \left[\mathbf{4_{2/3}} \oplus \mathbf{1_{2/3}} \right] \oplus \mathbf{1_{2/3}} \\ & \overset{SU(2)_L \times U(1)_Y}{\longrightarrow} \left[\left(\mathbf{3_{5/3}} \oplus \mathbf{3_{2/3}} \oplus \mathbf{3_{-1/3}} \right) \oplus \left(\mathbf{2_{7/6}} \oplus \mathbf{2_{1/6}} \right) \oplus \mathbf{1_{2/3}} \right] \\ & \oplus \left[\left(\mathbf{2_{7/6}} \oplus \mathbf{2_{1/6}} \right) \oplus \mathbf{1_{2/3}} \right] \oplus \mathbf{1_{2/3}} \end{split}$$

- \rightarrow possible $\Lambda_L q_L$, $\Lambda_R t_R$ embeddings
 - $Q_L = \Lambda_L q_L$ in SO(5) **14** omits large $Zb\bar{b}$ couplings
 - $ightharpoonup Q_R = \Lambda_R t_R$ in $SO(5) \, {f 14_R} + {f 5_R}$ ensures CPv and top mass

$$\begin{split} Q_L^{20'} &= \cos\theta_{20L} e^{\imath\phi_{20L}} Q_L^{20'_A} + \sin\theta_{20L} Q_L^{20'_B} \\ Q_R^{20'} &= \cos\theta_{20R1} e^{\imath\phi_{20R1}} t_R^{20'_A} + \sin\theta_{20R1} \cos\theta_{20R2} e^{\imath\phi_{20R2}} t_R^{20'_B} + \sin\theta_{20R1} \sin\theta_{20R2} t_R^{20'_C} \end{split}$$

CPv and Mass terms from Spurion Analysis

$$\begin{split} Q_L^{20'} &= \cos\theta_{20L} e^{i\phi_{20L}} Q_L^{20'_A} + \sin\theta_{20L} Q_L^{20'_B} \\ Q_R^{20'} &= \cos\theta_{20R1} e^{i\phi_{20R1}} t_R^{20'_A} + \sin\theta_{20R1} \cos\theta_{20R2} e^{i\phi_{20R2}} t_R^{20'_B} + \sin\theta_{20R1} \sin\theta_{20R2} t_R^{20'_C} \end{split}$$

$$\begin{split} \mathcal{L}_{\text{Yukawa}}^{(20',20')} &= \frac{y_L y_R^*}{g_*} f \left[\left(\bar{Q}_L^{\prime 20'} \right)_{66} \left(Q_R^{\prime 20'} \right)_{66} M_1 + \left(\bar{Q}_L^{\prime 20'} \right)_{6a} \left(Q_R^{\prime 20'} \right)_{a6} M_5 \right] + \text{h.c.} \\ &\stackrel{(A,AB)}{=} \frac{y_L y_R^*}{g_* f^3} \bar{t}_L \left[-f^2 h \sqrt{f^2 - h^2 - S^2} \frac{\sin \left(\theta_{20R1} \right) M_5}{2 \sqrt{2}} \right. \\ &- f^2 i h S \frac{3 \cos \left(\theta_{20R1} \right) M_5}{4 \sqrt{5}} \\ &- h S^2 \sqrt{f^2 - h^2 - S^2} \sqrt{2} \sin \left(\theta_{20R1} \right) \left(M_1 - M_5 \right) \\ &+ \frac{i}{2 \sqrt{5}} \left(h^3 S - 4 h S^3 \right) \cos \left(\theta_{20R1} \right) \left(M_1 - M_5 \right) \right] t_R + \text{h.c.} \end{split}$$

CCWZ: Effective Lagrangian for Spontaneously Broken Symmetries

Below condensation scale: Low energy description of SSB theory by CCWZ construction

$$egin{aligned} \langle ar{\Psi}\Psi
angle &= \Sigma = \mathit{U}\Sigma_0, \mathit{U} = e^{i(\sqrt{2}/f)\mathit{h}_r}\hat{T}_6^r \ \Sigma_0 &= \left(0_{1 imes 5}, 1\right)^T \end{aligned}$$

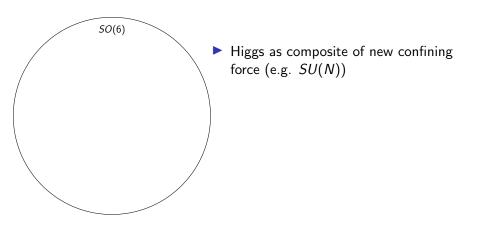
 \hat{T}_6^r : generators of broken symmetry SO(6)/SO(5)

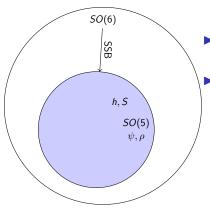
 Π_r : Goldstone bosons, transforming as fundamentals of SO(5)

$$U(\Pi) \xrightarrow{g \in SO(6)} gU(\Pi) h^{T}(\Pi, g)$$
with $h = \begin{pmatrix} h_5 & 0 \\ 0 & 1 \end{pmatrix}, h_5 \in SO(5)$

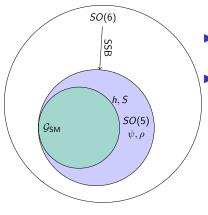
Decompose SO(6) objects into SO(5) objects using U Construct SO(5) invariant terms.

 \Rightarrow SO(6) invariant Lagrangian with "broken" symmetry encoded in U for

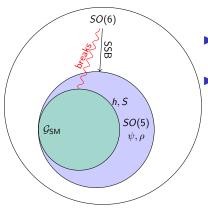




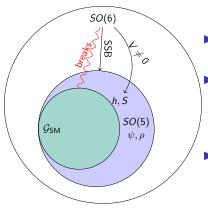
- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson



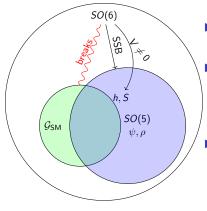
- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson



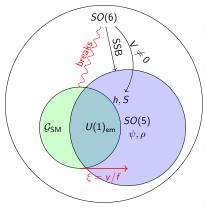
- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson



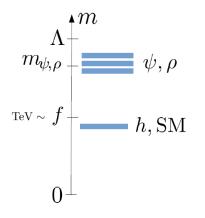
- ► Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson
- Break \mathcal{G} explicitly by interaction with Standard Model \mathcal{G}_{SM}



- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson
- Break G explicitly by interaction with Standard Model G_{SM}
 - $\rightarrow h$ as PNGB, $V(h) \neq 0$



- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - $\rightarrow h$ as Nambu-Goldstone-Boson
- Break G explicitly by interaction with Standard Model G_{SM}
 - $\rightarrow h$ as PNGB, $V(h) \neq 0$
- \triangleright $\langle h \rangle = v$ induces EWSB



- Higgs as composite of new confining force (e.g. SU(N))
- Assume sponteneously broken global symmetry \mathcal{G}/\mathcal{H} by condensation $\langle \bar{\Psi}\Psi \rangle \neq 0$
 - ightarrow h as Nambu-Goldstone-Boson
- ▶ Break \mathcal{G} explicitly by interaction with Standard Model \mathcal{G}_{SM}
 - ightarrow h as PNGB, $V(h) \neq 0$