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Introduction to the adiabatic Renormalization

▶ UV divergences: As in the case of flat space time,
observables are characterized by divergences in the deep UV.

▶ new divergences: The presence of gravity led to new
divergences that are not matched by the Minkowski ones.

⟨Tµν⟩ ≡ ⟨out,0| Tµν |in,0⟩

In flat-space time

⟨Tµν⟩ = ⟨Tµν⟩ − ⟨0MINK| Tµν |0MINK⟩

In curved space it is again divergent in UV.
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▶ Vacuum choice: There is not a preferred choice of the
vacuum.

Let us consider the minimal energy vacuum at time t0 defined by

ϕ(x) =
∑

k

{Akfk(x) + A†
kf∗

k (x)} , Ak |0⟩ = 0

At t > t0 the presence of a non trivial (gravity) background mixes
positives and negatives modes.

g(x) = αkf(x) + βkf∗(x) , |α2
k − β2

k| = 1

the field can be represented as a new combination of mode
functions such that:

ϕ(x) =
∑

k

{Bxgk(x) + B†
kg∗

k(x)}, Ak = αkBk + βkB†
−k

the "vacuum"-state is not anymore empty

⟨0| A†
kAk |0⟩ ≠ 0 = Nk = |βk|2
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Physical request:
particles should not be created in the limit when the energy of a
single particle is larger w.r.t the energy scale of the spacetime.
For our cosmological model:

k2

a2(t) + m2 >

(
ȧ

a

)2
,

ä

a
⇒ Nk ∼ const.

the particle content should not change if the change rate of a(t) is
adiabatic.

▶ Adiabatic vacuum:
the vacuum that minimizes the creation of particle due to the
presence of a time-dependent metric.
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Adiabatic renormalization prescription:

▶ evaluate expectation values w.r.t. the adiabatic vacuum

▶ mode functions are given in terms of WKB ansatz.

▶ expand up to the adiabatic order that matches the energy
dimensions of the operator.

▶ subtract the adiabatic term from the bare quantity.

For example the expectation value of Tµν

⟨Tµν⟩ren = ⟨Tµν⟩bare − ⟨Tµν⟩ad ,

For this particular case of the energy-momentum tensor one should
consider the adiabatic expansion up to fourth order.
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Axion-gauge fields

Let us consider a pseudo-scalar inflaton field ϕ coupled to U(1)
gauge field Aµ.
The Lagrangian of the model is given by

L = −1
2(∇ϕ)2 − V (ϕ) − 1

4(F µν)2 − gϕ

4 F µνF̃µν ,

where F̃ µν = ϵµναβFαβ/2 = ϵµναβ(∂αAβ − ∂βAα)/2.
The background is fixed by the homogeneous inflaton field ϕ(t)

[Ballardini et al ’19]
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▶ Due to the coupling with the inflaton field ϕ, quantum
fluctuations of the gauge field Aµ are amplified.

▶ backreaction of gauge field

ϕ̈+ 3Hϕ̇+ Vϕ = g ⟨E · B⟩
H2 = 1

3M2
p

[
ϕ̇2

2 + V (ϕ) + ⟨E2 + B2⟩
2

]
Ḣ = − 1

2M2
p

[
ϕ̇2 + 2

3 ⟨E2 + B2⟩
]

energy density

⟨E2 + B2⟩
2 =

∫
dk

(2π)2a(τ)4 k
2 [|A′

+|2 + |A′
−|2 + k2 (|A+|2 + |A−|2

)]
.

helicity integral

⟨E · B⟩ = −
∫

dk
(2π)2a(τ)4 k

3 ∂

∂τ

(
|A+|2 − |A−|2

)
,
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We assume de Sitter expansion for the background:

a(τ) = −1/(Hτ), τ < 0, H = const., ϕ̇ = const.

The Fourier mode functions A± of the gauge fields satisfy the
EOM

d2

dτ2 A±(τ, k) +
(
k2 ∓ kgϕ′

)
A±(τ, k) = 0

with analytical solution

A±(τ, k) = 1√
2k

e±πξ/2W±iξ, 1
2
(−2ikτ)

where W Whittaker function and

ξ ≡ gϕ′/(2a(τ)H) = gϕ̇/(2H)
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1
2 ⟨E2 + B2⟩bare = Λ4

8π2 + H2Λ2ξ2

8π2 + 3H4ξ2(5ξ2 − 1)log (2Λ/H)
16π2

+ H4ξ2(−79ξ4 + 22ξ2 + 29)
64π2(1 + ξ2) + H4ξ(30ξ2 − 11) sinh (2πξ)

64π3

+ 3iH4ξ2(5ξ2 − 1)(ψ(1)(1 − iξ) − ψ(1)(1 + iξ)) sinh (2πξ)
64π3

− 3H4ξ2(5ξ2 − 1)(ψ(−1 − iξ) + ψ(−1 + iξ))
32π2 ,

⟨E · B⟩bare = − H2Λ2ξ

8π2 −
3H4ξ

(
5ξ2 − 1

)
log (2Λ/H)

8π2

+ H4ξ(47ξ2 − 22)
16π2 − H4(30ξ2 − 11) sinh (2πξ)

32π3

−
3iH4ξ

(
5ξ2 − 1

) (
ψ(1)(1 − iξ) − ψ(1)(1 + iξ)

)
sinh(2πξ)

32π3

+
3H4ξ

(
5ξ2 − 1

)
(ψ(1 − iξ) + ψ(1 + iξ))
16π2 ,
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▶ Λ4, Λ2 and log[Λ] UV divergences for the energy density.

▶ Λ2 and log[Λ] UV divergences for the helicity integral.

▶ well-behaved in the infrared, not exhibiting IR divergences.
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Renormalization

1
2 ⟨E2 + B2⟩ren = 1

2 ⟨E2 + B2⟩bare − 1
2 ⟨E2 + B2⟩ad

⟨E · B⟩ren = ⟨E · B⟩bare − ⟨E · B⟩ad
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The adiabatic mode function of gauge fields for each polarization
λ = ± is given by the WKB approximation

AWKB
λ (k, τ) = 1√

2Ωλ(k, τ)
e−i

∫
Ωλ(k,τ ′)dτ ′

.

Inserting into the equation of motion, where a mass regulator m is
added to the equation of motion

d2

dτ2 AWKB
± (τ, k) +

(
k2 ∓ gkϕ′ + m2

H2τ2

)
AWKB

± (τ, k) = 0

we obtain the exact equation for the WKB frequency

Ω2
λ(k, τ) = Ω̄2

λ(k, τ) + 3
4

(Ω′
λ(k, τ)

Ωλ(k, τ)

)2
− 1

2
Ω′′

λ(k, τ)
Ωλ(k, τ) ,
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Adiabatic condition: slowly changes in time

∣∣∣ Ω̇
Ω2

∣∣∣ ≪ 1, ϵ ≪ 1 : ∂t → ϵ∂t

Ωk(t) is obtained as a power series in time derivatives

Ωk(t) = Ω(0)
k (t) + ϵ Ω(1)

k (t) + · · · + ϵn Ω(n)
k (t) ,

where Ω(n)
k is given by iterating the recursive equation up to order

n.
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Standard adiabatic regularization

1
2 ⟨E2+B2⟩ad =

∫ a(τ)Λ

0

dk
(2π)2a(τ)4 k

2 [|A′
+|2 + |A′

−|2 + k2 (|A+|2 + |A−|2
)]n=4

ad

⟨E · B⟩ad = −
∫ a(τ)Λ

0

dk
(2π)2a(τ)4 k

3 ∂

∂τ

(
|A+|2 − |A−|2

)n=4
ad ,
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1
2 ⟨E2 + B2⟩ad = Λ4

8π2 + H2Λ2ξ2

8π2 + 3H4ξ2(5ξ2 − 1)log (2Λ/H)
16π2

− H4

480π2 − H4ξ2(23ξ2 − 9)
16π2 −

3H4ξ2(5ξ2 − 1)log ( m
H )

16π2 ,

⟨E · B⟩ad = − H2Λ2ξ

8π2 − 3H4ξ(5ξ2 − 1)log (2Λ/H)
8π2

+ H4(19ξ − 56ξ3)
16π2 +

3H4ξ(5ξ2 − 1)log ( m
H )

8π2 .

The standard adiabatic renormalization of these two quantities,
despite correctly removes the divergences in the UV, also
introduces unphysical IR divergences, leading to not well-defined
final results.

[Ballardini et al ’19]
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Issues and Motivations:The needs of a IR cut off

▶ Adiabatic renormalization concerns the renormalization of UV
divergences.

▶ WKB ansatz for the mode functions matches exactly the
solution in the deep UV, where the space-time is well
approximated by the Minkowski one.

▶ WKB is well defined for modes that feel small curvature (or
slowly changing curvatures)

▶ In a cosmological fashion we should say that this is a good
approximation only for those modes that are sub-horizon.
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Regularization with IR-Cut off

We suggest that the procedure of adiabatic regularization should
be always performed on a proper domain which excludes the IR tail
of the spectrum.

▶ the adiabatic subtraction should be considered only up to a
comoving IR cut-off c = βa(t)H(t).

▶ This IR cut-off is associated to the scale at which the
adiabatic solution is not anymore a good approximation for
the mode functions, condition that happens when the modes
start to feel the curvature of space-time.

▶ the coefficient β, should be determined by a proper physical
prescription, fully in line with the spirit of each
renormalization scheme.
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New adiabatic regularization

1
2 ⟨E2+B2⟩ad =

∫ a(τ)Λ

βa(τ)H

dk

(2π)2a(τ)4 k2 [|A′
+|2 + |A′

−|2 + k2 (|A+|2 + |A−|2
)]

ad

⟨E · B⟩ad = −
∫ a(τ)Λ

βa(τ)H

dk

(2π)2a(τ)4 k3 ∂

∂τ

(
|A+|2 − |A−|2

)
ad ,
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1
2 ⟨E2 + B2⟩c=βHa(τ)

ad = Λ4

8π2 + H2Λ2ξ2

8π2 + 3H4ξ2(5ξ2 − 1) log (2Λ/H)
16π2

− β4H4

8π2 − β2H4ξ2

8π2 − 3H4ξ2(5ξ2 − 1) log (2β)
16π2 ,

⟨E · B⟩c=βHa(τ)
ad = − H2Λ2ξ

8π2 − 3H4ξ(5ξ2 − 1) log (2Λ/H)
8π2

+ β2H4ξ

8π2 + 3H4ξ(5ξ2 − 1) log (2β)
8π2 .

This results are obtained taking properly the limit m → 0
[C.Animali, P.C, G. Marozzi]
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How to fix the scheme:
Conformal anomaly

In the conformal limit, a proper renormalization scheme should
provide the conformal anomaly induced by quantum effects.

[Birrell ’82]
when at the classical level T µ

µ = 0

⟨T µ
µ⟩phys = −⟨T µ

µ⟩reg ,

where ⟨T µ
µ⟩reg is the trace contribution to the energy-momentum

tensor given by the particular renormalization method applied.
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▶ The two helicities of the mode functions A± are equivalent to
two conformally coupled massless scalar fields for ξ = 0.

d2

dτ2 A± +
(

k2 ± 2kξ

τ
+ m2

H2τ2

)
A± = 0 →

(
d2

dτ2 + k2
)

A± = 0

lim
ξ→0, m→0

⟨T 0
0⟩ad = lim

ξ→0, m→0

⟨E2 + B2⟩c=βHa(τ)
ad

2 = −β4H4

8π2 ,

this term should reproduce the expected value of the anomaly
(twice the scalar case), i.e.

β4H4

8π2 = H4

480π2 =⇒ β = 1√
2 × 151/4 ≈ 0.359
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We can now perform the proper renormalization procedure

1
2 ⟨E2 + B2⟩β = 2H4

960π2 +
H4ξ2 (−1185ξ4 + (330 + 4

√
15)ξ2 + 435 + 4

√
15
)

960π2 (1 + ξ2)

−
3H4ξ2 (5ξ2 − 1

)
log (15/4)

64π2 +
H4ξ

(
30ξ2 − 11

)
sinh(2πξ)

64π3

−
3H4ξ2 (5ξ2 − 1

)
(ψ(0)(−1 − iξ) + ψ(0)(−1 + iξ))

32π2

+
3iH4ξ2 (5ξ2 − 1

)
(ψ(1)(1 − iξ) − ψ(1)(1 + iξ)) sinh(2πξ)

64π3 ,

⟨E · B⟩β =
H4ξ

(
705ξ2 − 330 −

√
15
)

240π2 +
3H4ξ

(
5ξ2 − 1

)
log (15/4)

32π2

+
3H4ξ

(
5ξ2 − 1

)
(ψ(0)(1 − iξ) + ψ(0)(1 + iξ))

16π2

+
3iH4ξ

(
5ξ2 − 1

)
(−ψ(1)(1 − iξ) + ψ(1)(1 + iξ)) sinh(2πξ)

32π3

+
H4 (11 − 30ξ2) sinh(2πξ)

32π3 .

22 / 27



▶ This is a physically motivated prescription that is able to fix
univocally the renormalization scheme.

▶ we are able to obtain univocal finite results for the averaged
energy density and helicity of gauge fields.

▶ adiabatic renormalization method succeeds in providing the
conformal anomaly in the proper limit.
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Next:

▶ Study of phenomenological implication: evolution of inflaton
field, number of e-folds.

▶ Application of such method to other pathological scenarios
such as the model of a pseudo-scalar field coupled to the
gravitational Chern-Simons term [Kamada et al ’20].
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Conclusion

▶ Adiabatic renormalization is a powerful renormalization
scheme to regularize UV divergences.

▶ Should be truncated up to an IR cut-off proportional to the
horizon size.

▶ This cut-off should be fixed by a proper physical prescription.
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Thank you
for the attention
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