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@ Introduction



Introduction to the adiabatic Renormalization

» UV divergences: As in the case of flat space time,
observables are characterized by divergences in the deep UV.

> new divergences: The presence of gravity led to new
divergences that are not matched by the Minkowski ones.

(T),) = (out,0] T}, [in,0)
In flat-space time
(Thw) = (Tyw) — (OmiNk | Tuw [OMINK)

In curved space it is again divergent in UV.
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» Vacuum choice: There is not a preferred choice of the
vacuum.

Let us consider the minimal energy vacuum at time tg defined by

o(x) =Y {Apfulz) + ALfi(x)},  Ag0)=0
k

At t > to the presence of a non trivial (gravity) background mixes
positives and negatives modes.

g(x) = o f(2) + Brf" () o — B¢l =1
the field can be represented as a new combination of mode
functions such that:

o(x) = {Bugi(z) + Blgi(2)}, Ay =By + 6B,
k

the "vacuum"-state is not anymore empty

(0| ALAL|0) # 0 = Ny, = |8y
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Physical request:
particles should not be created in the limit when the energy of a
single particle is larger w.r.t the energy scale of the spacetime.
For our cosmological model:
k? a\? a

T+m2> () , = = N ~ const.

a?(t) a a
the particle content should not change if the change rate of a(t) is
adiabatic.

» Adiabatic vacuum:
the vacuum that minimizes the creation of particle due to the
presence of a time-dependent metric.
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Adiabatic renormalization prescription:

P> evaluate expectation values w.r.t. the adiabatic vacuum
» mode functions are given in terms of WKB ansatz.

P expand up to the adiabatic order that matches the energy
dimensions of the operator.

P subtract the adiabatic term from the bare quantity.
For example the expectation value of 7},
<T,uu>ren = <T;U/>bare - <Tuu>ad 5

For this particular case of the energy-momentum tensor one should
consider the adiabatic expansion up to fourth order.
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@ Motivation: a problematic example



Axion-gauge fields

Let us consider a pseudo-scalar inflaton field ¢ coupled to U(1)
gauge field A,,.
The Lagrangian of the model is given by

1
,(FW)2 oy

1
L=—5(Ve) - V(o) -

where FH = etoBE, 5/2 = etB(9, Ag — D5Aa) /2.
The background is fixed by the homogeneous inflaton field ¢(t)

[Ballardini et al '19]
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» Due to the coupling with the inflaton field ¢, quantum
fluctuations of the gauge field A, are amplified.

» backreaction of gauge field

2

¢+3Hp+V, =g(E-B)

L[ (B 1 BY)
3]%2 +V(o)+ 2
1 2 2,02 2
- 2M2 {‘b +3E+B >}

energy density

(E*+B% [ dk
2 - (2m)2a(1)?

K2 [JALP + AL + K (JA4 P +1A- )] .

helicity integral

© B = dk

(27r)2a(T)4

o (jAsP - A-)
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We assume de Sitter expansion for the background:

a(t)=—-1/(HT), 7 <0, H = const.,, ¢ = const.

The Fourier mode functions AL of the gauge fields satisfy the
EOM

d—zA (1, k) + (k‘2 F k‘ggb') Ay(r,k)=0
dT2 + ) + )

with analytical solution

1 .
Ay(r, k) = meiﬁgﬂwﬂfé (—2ikT)

where W Whittaker function and

£ = g¢'/(2a(r)H) = g¢/(2H)
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N | =

(E?

+ B2>bare =

<E . B>bare = -

AY HZA%¢? N SH*€%(5¢% — 1)log (2A/H)

8
+

<3 T

872 1672
HAE2(—79¢% 42262 +29)  H*¢(30¢2 — 11) sinh (27€)

6472(1 + £2) 6473

L BHIEGE - DA —if) — M +if))sinh (2m¢)

6473

_ BH'E (5% — 1)(y(=1 — i) + ¢(— L+i))

+

3272

H2A%e  3H'¢(5¢% —1)log (2A/H)
8r2 872
HY¢(47¢* —22)  H'(30¢” — 11) sinh (27¢)

1672 3273

3iH*e (5¢2 — 1) (v (1 — ig) — v (1 + i) ) sinh(2¢)

3273

N BHYE (568 — 1) ((1 — i) + (1 + z&))

1672
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» A% A? and log[A] UV divergences for the energy density.

» A? and log[A] UV divergences for the helicity integral.

» well-behaved in the infrared, not exhibiting IR divergences.
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1

DO |

Renormalization

(B + B?)cn

(E-B)

ren

1 1
5 <E2 + B2>bare — 5 <E2 + B2>ad

= (E-B)pye — (E-B)y

bare
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The adiabatic mode function of gauge fields for each polarization
A = =+ is given by the WKB approximation

AVKB(j 1) — 1 o [ uk)dr

V200 (k, 7)

Inserting into the equation of motion, where a mass regulator m is
added to the equation of motion

d? m?
— AYB (. k) + <k2 T gke' + ) AYKB(r k) =0

dr? H27r2

we obtain the exact equation for the WKB frequency

- 3 (k)N 1 (k,T)
Q2 :QQ e ( A\, ) P S S)
)\(k77_) )\(k77_)+ 4 QA(k,T) QQ)\<k7T>7
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Adiabatic condition: slowly changes in time

‘(?2’(1, e 1l: 0y — €0y

Q(t) is obtained as a power series in time derivatives
(1) = R0 + e RO+ + ),

where Q,(cn) is given by iterating the recursive equation up to order

n.
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Standard adiabatic regularization

N —

a(T)A
dk n=4
E 4B = [ ek AL AP R (AL + A )]

amA gk 5 0 e
(E‘B>ad:—/0 W a*(\AH —|A- |) !
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1, o A HPA2E2 3HUE(562 — 1)log (2A/H)
s B A B Y= omt ot 1672

H*  H*€2(23¢2-9) 3H*€*(562 — 1)log (12)

48072 1672 1672 ’
BBy = — H?A*¢  3H'¢(56% — 1)log (2A/H)
ad — ]2 872
HY(19¢ — 56€%)  3H*E(562 — 1)log (%)
1672 872 '

The standard adiabatic renormalization of these two quantities,
despite correctly removes the divergences in the UV, also
introduces unphysical IR divergences, leading to not well-defined

final results.
[Ballardini et al '19]
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Issues and Motivations: The needs of a IR cut off

» Adiabatic renormalization concerns the renormalization of UV
divergences.

» WKB ansatz for the mode functions matches exactly the
solution in the deep UV, where the space-time is well
approximated by the Minkowski one.

» WKB is well defined for modes that feel small curvature (or
slowly changing curvatures)

» In a cosmological fashion we should say that this is a good
approximation only for those modes that are sub-horizon.
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Regularization with IR-Cut off

We suggest that the procedure of adiabatic regularization should
be always performed on a proper domain which excludes the IR tail
of the spectrum.

P the adiabatic subtraction should be considered only up to a
comoving IR cut-off ¢ = Ba(t)H (t).

» This IR cut-off is associated to the scale at which the
adiabatic solution is not anymore a good approximation for
the mode functions, condition that happens when the modes
start to feel the curvature of space-time.

» the coefficient 3, should be determined by a proper physical
prescription, fully in line with the spirit of each
renormalization scheme.
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New adiabatic regularization

a(T)A dk
(E*+B?)u /ﬁ (a (2m)%a(r)? K2 AL + AL+ k2 (AP + 1A P)]

a(‘r)A dk 8
E-B) =— — B (JALP—1A_?
< >ad /6(1(7—)H (271_)20/(7_)4k or (‘ +‘ | ‘ )ad 5
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1 2 o\c=BHa(r) _ A74 H2A2€2 3H4€2(5£2 — 1) IOg (2A/H)
2 (E”+ B et e T 1672
BH*  pPH'E*  3H'E*(56* —1)log (28)
872 872 1672 ’

_HPA’C 3HUE(5€% —1)log (2A/H)

c=FHa(T
<E'B>adﬁ (r) _

82 82
BEH*E  3H*¢(5¢% —1)log (2)
+ + .
872 872

This results are obtained taking properly the limit m — 0
[C.Animali, P.C, G. Marozzi]
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@ How to fix univocally the renormalization scheme: conformal
anomaly



How to fix the scheme:

Conformal anomaly

In the conformal limit, a proper renormalization scheme should

provide the conformal anomaly induced by quantum effects.
[Birrell '82]
when at the classical level 7%, =0

<T'U:u>phys = *<T'u‘u>rega

where (T )eg is the trace contribution to the energy-momentum
tensor given by the particular renormalization method applied.
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» The two helicities of the mode functions AL are equivalent to
two conformally coupled massless scalar fields for £ = 0.

d2 9, 2KE m?2 d2 9
[ —_— —_— = —_— A =
2 Ay + (k £ - + 2.2 AL =0 — a2 +k +=0
E2 + B2>C:5H‘1(T) B4H4
li T%)ad = i < ad = -
g—>0{%—>0< 0)ad §—>0,H7I711%0 2 82’

this term should reproduce the expected value of the anomaly
(twice the scalar case), i.e.

BAHA H* 1
— — [f=—" 2~ 0.359
82 48072 p V2 x 151/4
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We can now perform the proper renormalization procedure

ot H'€? (—1185¢" + (330 + 4v/15)€% + 435 + 41/15)
= 96072 T 96072 (1 + £2)
3H'¢? (5¢° — 1) log (15/4) N H*¢ (30€* — 11) sinh(27¢)
6472 6473
BHAE? (56% — 1) (W V(=1 — i) + O (—1 + ig))
3272

3iH'E” (5¢° — 1) (™M (1 —i&) — M (1 + i€)) sinh(27E)

+ 64m3 ’

(E? + B%)g

N =

H*¢ (70562 — 330 — v/15)  3H*¢ (562 — 1) log (15/4)
(E-B)s = ( 24072 ) + ( 327r2)

BH¢ (567 — 1) (0 (1 —ig) + 90 (1 + ig))
+ 1672

3iH*¢ (567 — 1) (—v (1 —i&) + vV (1 + i€)) sinh(27€)
+

3273
H* (11 — 30¢?) sinh(27¢)
323
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» This is a physically motivated prescription that is able to fix
univocally the renormalization scheme.

» we are able to obtain univocal finite results for the averaged
energy density and helicity of gauge fields.

» adiabatic renormalization method succeeds in providing the
conformal anomaly in the proper limit.
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Comparison between the new adiabatic scheme and the minimal
subtraction scheme (MS).
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Next:

» Study of phenomenological implication: evolution of inflaton
field, number of e-folds.

» Application of such method to other pathological scenarios
such as the model of a pseudo-scalar field coupled to the
gravitational Chern-Simons term [Kamada et al "20].
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@ Conclusions



Conclusion

» Adiabatic renormalization is a powerful renormalization
scheme to regularize UV divergences.

» Should be truncated up to an IR cut-off proportional to the
horizon size.

» This cut-off should be fixed by a proper physical prescription.
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Thank you
for the attention
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