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- However, this widely used assumption of constant can be
violated in generic models of perturbative reheating, e.g., when
the inflaton has a non-trivial potential.

- The understanding of the reheating era is essential for the dark
matter sector, especially in the context of the freeze-in DM
production.
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Time-averaged Boltzmann equations

Interactions
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Non-instantaneous reheating
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Example model

1.

As an illustration, we consider

the a-attractor T-model: a=1/6, 0
A=3-10"3 Mp;
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Example model

homogeneous, classical . h,'
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HiggS portal background field ~_.**
gho Mp19|h|?
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Kinematic suppression

The inflaton decay rate can be written as

effective mass
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Let there be darkness
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Gravitational production

n=2/3, ge=10"", a=1/6, A=3-10""Mp,

The source terms are ! T "y G|
F-——====c= | : HE — 10"
: e 2 oo 2 2 4 35 i — 510" ]
| 1 [),) 2n12 QmX 8mX — ol —5-10"
So= g 2 PP\ 1- %5 ) *roe| 3 :
time 8 MPI (k’u,‘) (/(w) < .
k=1 2]
dependent L 30
! £
| = 250
1
L -
-’mﬂ 5 lb 1‘5 20
Logla/a.)
n=2/3, ghs=10"", a=1/6, A=3- 10" Mp
40 i . A .
—my #0
my, =0
Ssum = [no<UM>0 + ”1/2<U|V\>1/2 + f71 . ]
T4 T 4 —
o (m) : mx < T, S ]
)
-2 4
(olv])inx o g
5 3 101 B
1 mxT” —2my/T s
T6r M2 € , mx > T. :
Thermally-averaged cross-section for 0t T

the annihilation of massless SM vectors Logla/a.]



The DM relic abundance
can be calculated as
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The DM relic abundance
can be calculated as

Qgrath ~ mx Ngrav(arh) S0
X ~
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Successful DM model has
to predict the correct
amount of DM i.e,,

Q%™ p? = QP p? = 0.1198 + 0.0012

For the n=2 case,
Q5™ h? does not depend on gpy

Light DM particles are dominantly
produced from the inflaton

Heavy DM particles are produced
by the freeze-in from the SM sector
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We have demonstrated that the non-standard (n¥1) cosmologies
and the kinematical suppression of radiation production significantly
affect the thermal bath evolution and the DM production.

- In particular, we have shown that the duration of reheating and
the evolution of the radiation energy density, pr, are sensitive
to the inflaton potential shape.
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- Moreover, we have discussed the role of kinematical
suppression in the reheating dynamics. We have demonstrated
that the non-zero mass of the Higgs boson leads to the
elongation of the reheating period, changes the pr(a) and T(a)
evolution, and conduces to the decrease of T,,...

- Finally, we have pointed out that the DM freeze-in production is
very sensitive to the reheating dynamics.



Thank you for your attention!
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EoM fo nflaton

The equation of motion (EoM) for the ¢ field is:

b+3Hp+ V 4(p) =0, H? =pg/(3Mp)).

We can distinguish two types of solutions to the ¢'s FoM:
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Analytical solutions to the inflaton EoM after the end of inflation

M. A. G. Garcia et al.,arXiv:2004.08404
M. A. G. Garcia et al.,arXiv:2012.10756
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Particles production in a classical inflaton background

The inflaton field can be regarded as a homogeneous, classical field
that coherently oscillates in time.

For the interactions linear in ¢ = - P, the energy gain per unit
volume per unit time due to the pair production of f particles with
mass m can be calculated as

1dE; _ ()~ 2 \/W
Vo e ;kw‘pk‘ ‘MO—%(k)’ Re 1*W )
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The matrix element Mg_,¢ accounts for the quantum process of two
particles production out of the vacuum.



Particles production in a classical inflaton background

For the interactions proportional to the ¢ = - P term, the
lowest-order non-vanishing S-matrix element takes the form

S =" Pt / d* xo(t) e Line () |i)
- ,
where

i) =10), |f) = 4141 [0).

If the envelope o(t) varies on the time-scale much longer than the
time-scale relevant for processes of particle creation, the S-matrix
element can be written as

SP = ip(t) D PreMoss (k) x @n)*a(ke — 268 (ps, + pr).
k

19



