

UNIVERSIDADE D COIMBRA

Evaporating primordial black holes, the string axiverse, and hot dark radiation

Marco Calzà, John March-Russell, and João G. Rosa.

PASCOS 2022, Heidelberg.

26/07/2022

A new way to probe the total number of ALPs with m < few MeV through the spin distribution of PBHs that are evaporating today!

The String Axiverse

Scalar field with a shift symmetry in 4D No mass terms by perturbative effects Mass is generated by non-perturbative effects

String theory: $E \downarrow \rightarrow SM + \mathcal{G} \rightarrow 10D (4 \text{ s-t} + 6 \text{ compactified})$

Compactified extra dimensions are the key concept for the Axiverse!

6 extra d + many ways to compactify = $(N_a \sim [100-10^5])$

Primordial BH

- PBHs are BHs formed in the early Universe
- Through the gravitational collapse of **overdensities** in the **cosmic plasma**
- Masses can be several orders of magnitude below the solar mass

 $M \sim 10^{12}$ kg evaporates enough to show changes in a_* in presence of many scalars. (T > few MeV)

Radiation Dominated Era \rightarrow small spin (percent level).

Early Matter Dominated Era → Nearly extremal

Spacetime before and after the formation of an horizon (Hawking 1975)

In a (1+1)D s-t:
$$n_{\omega} = \frac{1}{(e^{\frac{2\omega\pi}{\kappa}} - 1)}$$
, $T_{H} = \frac{\kappa}{2\pi}$
In a 4D s-t: $\nabla^{\mu} \nabla_{\mu} \Phi = 0 \Rightarrow \cdots \Rightarrow \left(\frac{d^{2}}{dx^{2}} + \omega^{2} - V(r)\right) \psi(r) = 0$

BH geometry acts as a potential barrier that filters Hawking radiation.

Radial Teukolsky Equation:

$$\Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR}{dr} \right) + \left(\frac{K^2 - 2is(r-M)K}{\Delta} + 4is\omega r - \lambda \right) R = 0 \quad \longrightarrow \quad \Gamma^s_{l,m}(\omega)$$

$$\forall \exists \text{ field \& mode:} \quad n_{l,m}^{s}(\omega) = \frac{\Gamma_{l,m}^{s}(\omega)}{(e^{\frac{2k\pi}{\kappa}} - 1)} \qquad \kappa = \frac{\sqrt{1 - a_{*}^{2}}}{2}r_{*} \qquad k = \omega - m\Omega_{H}$$
Page ('74 - '76)
Hiskock et al ('98)
Mass & angular momentum:
$$\begin{pmatrix} f_{s} \\ g_{s} \end{pmatrix} = \frac{1}{2\pi} \sum_{p,l,m} \int_{0}^{\infty} \frac{\Gamma_{l,m}^{s}(\omega)}{(e^{\frac{2k\pi}{\kappa}} \pm 1)} \binom{x}{m a_{*}^{-1}} dx \qquad x = \omega M$$

$$y = -\ln[a_{*}] \quad z = -\ln[M/M_{i}] \quad \tau = -M_{i}^{3}t \qquad Page ('74 - ?76) \\ Hiskock et al ('98) \\ \frac{dz}{dy} = \frac{1}{h} = \frac{f}{g - 2f} \qquad \frac{d\tau}{dy} = \frac{e^{3z}}{g - 2f} \qquad \frac{da_{*}}{dt} = \frac{-a_{*}hf}{M^{3}} \qquad s = 0 \\ s = 1/2 \\ s = 3/2 \\ s = 2 \\ 0.4 \qquad 0.6 \qquad 0.8 \qquad 1.0$$

7

A BH is not evaporating through only one field!!!

 $f_{tot} = n_0 f_0 + n_{1/2} f_{1/2} + n_1 f_1 + n_{3/2} f_{3/2} + n_2 f_2$ $g_{tot} = n_0 g_0 + n_{1/2} g_{1/2} + n_1 g_1 + n_{3/2} g_{3/2} + n_2 g_2$

Evaporating BH: $M \downarrow \& T_{H} \uparrow \rightarrow$ emitted particle set changes!!!

Particles emission with $m > T_{H}$ is exponentially suppressed

Approximation: particles are considered massless for $m < T_{H}$ and are otherwise absent from the emission spectrum.

Set up of our description

String Axiverse $\rightarrow N_a$ scalars field in addition to the SM particles and the graviton.

Axiverse fingerprint in PBHs evaporation

Present PBH spin, a_{*0} , as a function of their present mass, M_0 , for an initial population with spin $a_* = 0.01$ and varying mass. Curves labeled by number of light ALPs. 10

Axiverse fingerprint in PBHs evaporation

Present PBH spin, a_{*0} , as a function of their present mass, M_0 , for an initial population with spin $a_* = 0.99$ and varying mass. Curves labeled by number of light ALPs. 11

ALPs \rightarrow cosmological and astrophysical effects \rightarrow signatures of individual axions (mass ranges), not of the whole 'string axiverse'.

The **PBH spin distribution** from **evaporation** process in the presence of **many light scalar** fields **cannot**, to our knowledge, be **mimicked** by other processes \rightarrow **unique signature** of an **underlying theory** with a large number of light scalars.

Hot Dark Radiation

Integrated flux of ALPs from a single PBH in the relevant PBH spin range $\sim 3 \times 10^{22} N_a (10^{10}/M) s^{-1}$

- → Reasonable N_a → Hawking luminosity is ALPs dominated
- → Hot $(10^{10} \text{kg} \rightarrow \text{T}_{\text{H}} \sim 1 \text{ GeV})$
- \rightarrow Dark to the SM
- → Not red-shifted (It is now evaporating)

→ Usual constraints (BBN, CMB...) do not apply → potentially the present ALPs hot 'dark-radiation' $\rho > \rho_{CMB}$.

Detection of background energetic dark axions is a striking signal for both axiverse physics and the existence of Hawking evaporating PBHs.

References

Evaporating primordial black holes, the string axiverse, and hot dark radiation

Marco Calzà,^{1,*} John March-Russell,² and João G. Rosa^{1,†}

¹Univ Coimbra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra and CFisUC, Rua Larga, 3004-516 Coimbra, Portugal ²Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom (Dated: October 27, 2021)

We show that primordial black holes (PBHs) develop non-negligible spins through Hawking emission of the large number of axion-like particles generically present in string theory compactifications. This is because scalars can be emitted in the monopole mode (l = 0), where no angular momentum is removed from the BH, so a sufficiently large number of scalars can compensate for the spin-down produced by fermion, gauge boson, and graviton emission. The resulting characteristic spin distributions for 10^8 - 10^{12} kg PBHs could potentially be measured by future gamma-ray observatories, provided that the PBH abundance is not too small. This yields a unique probe of the total number of light scalars in the fundamental theory, independent of how weakly they interact with known matter. The present local energy density of hot, MeV-TeV, axions produced by this Hawking emission can possibly exceed $\rho_{\rm CMB}$. Evaporation constraints on PBHs are also somewhat weakened.

Superstring theory is one of the leading candidates for a fundamental theory combining quantum gravity and Light string axions can have a wide range of cosmological and astrophysical effects, e.g. steps in the matter

UNIVERSIDADE D

Thanks for your attention!!!

