

Cosmological and astrophysical constraints on decaying axion-like particles

Felix Kahlhoefer PASCOS, Max Planck Institute for Nuclear Physics, Heidelberg, 28 July 2022

> Based on **arXiv:2205.13549** with Csaba Balázs, Tomás E. Gonzalo, Will Handley, Sebastian Hoof, David J.E. Marsh, Pat Scott and Patrick Stöcker

Goldstone bosons

- Strong motivation for new light states: **Goldstone's theorem**
 - Spontaneous breaking of an (approximate) global symmetry \rightarrow Goldstone bosons
 - Underlying symmetry protects mass, so they are naturally light (or even massless)
 - Interactions with SM particles are suppressed by the scale of symmetry breaking
 - Common explanation for small mass and small couplings!
- These so-called **axion-like particles (ALPs)** occur in many SM extensions
 - Solutions to the strong CP problem
 - String compactifications
 - Supersymmetry breaking
 - Relaxion mechanism

Weinberg (1978), Wilzcek (1978)

Arvanitaki et al., arXiv:0905.4720, Cicoli et al., arXiv:1206.0819

Bellazzini et al., arXiv:1702.02152

Graham et al., arXiv:1504.07551, Flacke et al., arXiv:1610.02025

Parameter space for ALP-photon couplings

Cosmological constraints on ALPs

Standard lore:

- Parameter space corresponding to 1 s < τ < 10¹⁷ s fully excluded by cosmological constraints
- Important implicit assumption: ALPs are in thermal equilibrium in the early universe
- How robust is this assumption?

Thermal equilibrium

ALPs thermalise through the Primakoff process

Interaction rate: $\Gamma_p \sim \alpha T^3 g_{agg}^2$

Thermalisation if $\Gamma_p > H \sim T^2 / M_{pl}$

 $\rightarrow T > \alpha / (M_{pl} g_{agg}^2)$

For low reheating temperature, this condition may never be satisfied

Example: For $g_{agg} = 10^{-15}$ GeV no thermalisation occurs for $T_R < 50$ GeV

Depta et al., arXiv:2002.08370

ALP production beyond equilibrium

Low T_R: ALP abundance set by non-equilibrium processes

- **Realignment mechanism** (depends on unknown initial misalignment angle θ_{a})
 - → Resulting ALP abundance essentially free parameter
- **Freeze-in production** (calculable as function of T_{R} , g_{aqq} and m_{a})
 - → Lower bound on reheating temperature ($T_R > 5$ MeV) sets lower bound on ALP abundance
- ALP abundance may be suppressed by many orders of magnitude (compared to equilibrium) but cannot be arbitrarily small

Cosmological constraints

ALP decays inject energy into electron-photon plasma

- → Even ALPs that constitute a tiny fraction of the energy density of the universe may be tested by cosmological observations
- \blacksquare Modifications of N_{eff} and η_{b}
- Delay of recombination
- CMB spectral distortions
- Primordial element abundances

Additional constraints (independent of ALP abundance) from SN1987A

Public code https://github.com/marie-lecroq/ALP-fluence-calculation based on Jaeckel et al., arXiv:1702.02964

CMB spectral distortions (SDs)

- If the ALPs decay shortly before recombination, the injected energy may not be fully thermalised
 - \rightarrow Imprint on the spectral shape of the CMB
- Best constraints on spectral distortions (from COBE/FIRAS) over 25 years old
- Much stronger constraints could be obtained with future satellites ("PIXIE")

For likelihood calculation, see Lucca et al., arXiv:1910.04619

Need for global fits

Need to combine variety of numerical codes

Want to also vary ACDM parameters

Want to also include other constraints

- Challenging parameter scans! \rightarrow
- Perfect for the **CosmoBit** module of the Global And Modular \rightarrow BSM Inference Tool GAMBIT

Renk, FK et al., arXiv:2009.03286

 \rightarrow need to include BAO & SNIa data

Frequentist scan: Results

blue: high likelihood ↔ allowed
white: low likelihood ↔ excluded
grey: not explored by scan
white star: best-fit point

Key points:

- Different cosmological probes constrain different ranges of τ
- SN1987A excludes large g_{agg}

Frequentist scan: Results

PIXIE forecasts

Karlsruhe Institute of Technology

- Future satellite missions like PIXIE may substantially improve sensitivity to spectral distortions
- Upper bounds on g_{agg} may be improved by orders of magnitude for 10⁶ s < τ < 10¹² s
- Lower bound on m_a strengthened by two orders of magnitude
- Best-fit point from previous scan would lead to clear discovery

Conclusions

- Decaying (MeV-scale) axion-like particles have wide range of implications for particle physics and cosmology
- For $10^4 \text{ s} < \tau < 10^{13} \text{ s}$ ALPs produced in the early universe decay between BBN and CMB
- Strongly excluded for thermally produced ALPs
- Global fit reveals viable parameter space for non-thermal ALPs (freeze-in & misalignment production)

Promising strategy: future spectral distortion missions (PIXIE)