BHs and compact objects in LV gravity
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« Why LV gravity?
« BHs Iin LV gravity

e Compact objects in LV gravity
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WHY are we interested on Lorentz Violations in Gravity?

-  Why not? Is Nature really Lorentz invariant?

Precision tests in the matter sector
Gravitational physics is mostly tested in the non-relativistic limit
(Local tests in the solar system, large scale cosmology)
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- Quantum Gravity Horava Gravity

Can provide a UV completion for GR
Formulated as a standard field theory
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Kﬁf = clg“ﬁ 8 T 625/3‘55 + 635355 + c,U “Uﬂgﬂy

Generically propagates a vector and a scalar

There is a combination of couplings such that only the scalar propagates

- The limit of HG cip—C3=¢C, —> 0

Jacobson PRD 64 (2001) 024028
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This action has stationary and spherically symmetric solutions of the form
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Jacobson PRD 64 (2001) 024028
Berglund, Bhattacharyya, Mattingly, Phys.Rev.D 85 (2012) 124019
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But if the theory is Lorentz violating, the Horizon has no meaning! "‘,

Universal Horizon
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The peeling close to the UH mimics that of
rays in the event horizon of a GR black hole
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The peeling close to the UH mimics that of
rays in the event horizon of a GR black hole
Thermodynamics
n—1 kyy 2 2y
I = . - gmatterNat_Cax

* We have confirmed this result
* By collapsing a shell

H-V, Liberati, Santos-Garcia, JHEP 04 (2021) 255

By studying the peeling and causal structure close to the UH
Del Porro, H-V, Liberati, Schneider, PRD 105 (2022) 10, 104009

By studying quantum tunnelling through the horizon

Del Porro, H-V, Liberati, Schneider, 2207.08848



https://arxiv.org/abs/2207.08848
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Franchini, H-V, Barausse PRD 103 (2021) 8, 084012
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DVar = N —m——  We need LV matter. But that’s hard...

Franchini, H-V, Barausse PRD 103 (2021) 8, 084012



Compact objects (aka neutron stars) in LV gravity
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Compact objects (aka neutron stars) in LV gravity

1
S = v Jd X\/—8& (—R - K7V, U'V,U = AU, — 1)>

Kl‘j‘f = clg“ﬁ 8 T 625/755 -+ 635355 -+ c4U“Uﬂg/w

-GW propagateatc=1 ¢, +¢c3=0

- Solar system tests 3¢, = ¢y < O(1)

- The limit of HG Cp,—C3=¢C,—>
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In the point particle approximation this is parametrised by sensitivities
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The sensitivities also control the emission of gravitational waves in binary systems of compact objects i.e.
binary pulsars



- As pulsars move the period of the orbit
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=However, instead of the c_i couplings, we use a different parametrization

x1, Ay, Cm’%



There are some phenomenological constraints on the @ther coupling constants as
discussed in Sec. 2, i.e., |a;| < 107%, |az] < 1077 (Solar system constraints), ag < 0,
o < 8ay, < 0 and ¢, > —a;/2 (positive energy, absence of vacuum Cherenkov
radiation and gradient instabilities) and ¢, < 10-'® (GW constraint).” Using these

~

prc—cxistigg constl;)aints and by determining if the estimated value of P, lies within the
range P, +4P,  (Table 1), we determine the consistency of points in the parameter

space with observations.



- Obs

Pulsar System my(Mg) mo(Mg) P, (days) Py
PSR J1738-+0333[35] 1.467008 | 0.18170005 | 0.3547907398724(13) | —25.9(3.2) x 10715
PSR J0348-+0432 [6)] 2.01(4) 0.172(3) 0.102424062722(7) | —0.273(45) x 10~!2
PSR J1012+5307 [21] [51] | 1.64(0.22) | 0.16(0.02) 0.60467272355(3) —1.5(1.5) x 10~
PSR J0737-3039 [50] 1.3381(7) | 1.2489(7) 0.10225256248(5) —1.252(17) x 1012

There are some phenomenological constraints on the sther coupling constants as
discussed in Sec. 2, i.e., |ag| < 107%, |az] < 1077 (Solar system constraints), aq < 0,
o, < 8a, < 0 and ¢, > —a;/2 (positive energy, absence of vacuum Cherenkov
radiation and gradient instabilities) and ¢, < 107'® (GW constraint).®* Using these
pre-existing constraints and by determining if the estimated value of P, lies within the

- obs + obs

range P, +4F, (Table 1), we determine the consistency of points in the parameter

space with observations.

+triple system PSR J0337+1715
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Conclusions

 Bhs in Horava gravity reinforce the link between horizons and thermodynamics

* Although LV seems to dilute the concept of horizon, this is not true for this specific
family of theories.

 Observations constrain the space of parameters
« However, there is still room for non-trivial deviations from LI in the gravitational sector
« ONMs will not distinguish between GR and HG

« We have improved the bounds on the c_i’s an order of magnitude



