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(UV)-Complete Top-Down String Dual of Large N Thermal

QCD-like Theories at Intermediate Gauge/’t Hooft Coupling and Its

M Theory Uplift

❑ Type IIB string dual of Large N thermal QCD-like theories have been worked out
by M. Mia, K. Dasgupta, C. Gale and S. Jeon[2009] whose brane setup is given
in the table below.

S. No. Branes World Volume

1. N D3 R1,3(t, x1,2,3) × {r = 0}

2. M D5 R1,3(t, x1,2,3) × {r = 0} × S2(θ1, ϕ1) × NP
S2

a (θ2,ϕ2)

3. M D5 R1,3(t, x1,2,3) × {r = 0} × S2(θ1, ϕ1) × SP
S2

a (θ2,ϕ2)

4. Nf D7 R1,3(t, x1,2,3) × R+(r ∈ [|µOuyang|
2
3 , rUV ]) × S3(θ1, ϕ1, ψ) × NP

S2
a (θ2,ϕ2)

5. Nf D7 R1,3(t, x1,2,3) × R+(r ∈ [RD5/D5 + ϵ, rUV ]) × S3(θ1, ϕ1, ψ) × SP
S2

a (θ2,ϕ2)

Table: Type IIB Brane Setup.
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❑ In the UV(r > RD5/D5), Color gauge group is SU(N + MD5)× SU(N + MD5) and
flavor gauge group is SU(Nf )× SU(Nf ). In the IR(r < RD5/D5),
SU(N + MD5)× SU(N + MD5) changes to SU(N + MD5)× SU(N) because D5
are not present in the IR.

❑ Pair of gauge couplings flow oppositely for SU(N + M) and SU(N). Higher rank
gauge coupling flow towards the strong coupling and vice-versa.

❑ The flux of NS-NS B through the vanishing S2, apart from Nf via the dilaton
being dependent on the same, is the reason for introduction of non-conformality.
This is why M D5-branes were introduced in the UV to cancel the net M
D5-branes charge in the UV.

❑ Nf flavor D7-branes were introduced via Ouyang embedding P. Ouyang[2003].

❑ Nf flavor D7-branes enters the RG flow of the gauge couplings via the dilaton,
therefore Nf D7-branes were introduced(in the UV, UV-IR interpolating reason) to
cancel the net Nf D7-branes charges in the UV and UV-IR interpolating reason.

❑ In the IR, at the end of Seiberg-like duality cascade, the number of colors Nc

gets identified with M, which in the ’MQGP limit’ can be tuned to equal 3.
Color-flavor enhancement of the KS-like length scale in the IR ensures supergravity

can still be trusted K.Sil, A.Misra [2015].
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Gravitational Dual

❑ Finite temperature and finite separation between D5 and
D5-branes (denoted by RD5/D5) on the gauge theory side
correspond to introduction of black hole (for high temperatures,
i.e., T > Tc on the gauge theory side) and resolution of the two
cycle in the gravity dual side .

❑ IR confinement on the gauge theory side corresponds to
deformation of three cycle in the gravity dual side.

❑ Hence, gravitational dual of type IIB brane construct is warped
resolved deformed conifold. Backreaction are included in warp
factor and fluxes.
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Type IIA Mirror, It’s M Theory Uplift and O(l6p ) correction to the same

❑ Type IIA SYZ mirror (involving a warped resolved (deformed)
conifold in the (gravity dual/) brane construct) of the type IIB
gravitational dual of M. Mia et al [2009] (involving a warped
resolved deformed conifold), and its M theory uplift (involving a
seven-fold with G2 structure) at finite gauge/string coupling(MQGP
limit) have been worked out by M. Dhuria, A. Misra[2013];K. Sil, A.
Misra[2015].

❑ MQGP Limit: gs ∼ 1
O(1) , M,Nf ≡ O(1), gsN >> 1, gsNf < 1,

gsM < 1, gsM2

N ≪ 1.
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❑ The T 3-valued (x , y , z) (used for effecting SYZ mirror via a triple T -dual in
M.Dhuria, A.Misra [2013]; K.Sil, A.Misra [2015]) are defined via (based on A.
Knauf’s thesis [2006] and papers therein):

ϕ1 = ϕ10 +
x

√
h2 [h(r0, θ10,20)]

1
4 sin θ10 r0

,

ϕ2 = ϕ20 +
y

√
h4 [h(r0, θ10,20)]

1
4 sin θ20 r0

ψ = ψ0 +
z

√
h1 [h(r0, θ10,20)]

1
4 r0

,

the squashing factors h1,2,4 defined in M.Mia et al [2009], and one works up to
linear order in (x , y , z). Up to linear order in r , i.e., in the IR, it can be shown
Dasgupta et al [2006] that θ10,20 can be promoted to global coordinates θ1,2 in all
the results in the paper.
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❑ For D5-branes wrapping the resolved S2 of a resolved conifold geometry Zayas,
Tseytlin [2000]], which breaks SUSY globally, as in Becker et al [2004], to begin
with, SYZ is implemented wherein the pair of S2s are replaced by a pair of T 2s in
the delocalized limit, and the correct T-duality coordinates are identified.

❑ Upon uplifting the mirror to M theory, it is found that a G2-structure can be
chosen which is free of the delocalization, implying that descending back to type
IIA theory is also free of delocalization K. Dasgupta et al [2004]. For the SYZ
mirror of the resolved warped deformed conifold which figures in the gravitational
dual of large-N thermal QCD-like theories of M.Mia et al [2009] that gets uplifted
to M-theory with G2 structure worked out in M.Dhuria, A.Misra [2013]; K.Sil, A.
Misra [2015], the idea is exactly the same.

❑ Higher derivative correction to the M theory uplift of M. Dhuria, A. Misra[2013]; K.
Sil, A. Misra[2015] have been worked out by V. Yadav, A. Misra[2020] by
incorporating O(R4) terms in the D = 11 SUGRA action. HD correction on the
gravity side corresponds to the intermediate gauge/’t Hooft coupling in gauge
theory side (relevant to QGP - Natsuume [2007]).
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O(l6
p )-Corrections to the MQGP Background

❑ The N = 1,D = 11 supergravity action inclusive of the leading quantum corrections at O(l6p ) terms , is given
by Tseytlin [2000]:

SD=11 =
1

2κ2
11

[∫
M11

√
GR +

∫
∂M11

√
hK −

1
2

∫
M11

√
GG2

4 −
1
6

∫
M11

C3 ∧ G4 ∧ G4

+

(
4πκ2

11

) 2
3

(2π)432.213

(∫
M

d11x
√

GM
(

J0 −
1
2

E8

)
+

∫
C3 ∧ X8 +

∫
t8t8G2R3 + ·

)]
− Sct,

where:

J0 = 3 · 28(RHMNK RPMNQRH
RSPRQ

RSK +
1
2

RHKMNRPQMNRH
RSPRQ

RSK )

E8 =
1
3!
ϵABCM1N1...M4N4ϵABCM′

1N′
1...M

′
4N′

4
RM′

1N′
1 M1N1 . . .R

M′
4N′

4 M4N4 ,

X8 =
1

192(2π)4

[
trR4 −

1
4
(trR2)2

]
,

κ2
11 =

(2π)8l9p
2

,

9 / 35



❑

tN1...N8
8 =

1
16

(
− 2

(
GN1N3 GN2N4 GN5N7 GN6N8 + GN1N5 GN2N6 GN3N7 GN4N8 + GN1N7 GN2N8 GN3N5 GN4N6

)
+8
(

GN2N3 GN4N5 GN6N7 GN8N1 + GN2N5 GN6N3 GN4N7 GN8N1 + GN2N5 GN6N7 GN8N3 GN4N1
)

−(N1 ↔ N2)− (N3 ↔ N4)− (N5 ↔ N6)− (N7 ↔ N8)
)
.

❑ Also, from J.Liu, R.Minasian [2013]:

t8t8G2R3 = tM1...M8
8 t8

N1....N8
GM1

N1PQGM2
N2

PQR N3N4
M3M4

R N5N6
M5M6

R N7N8
M7M8

.

❑ In the MQGP limit: |J0| > |E8| > |t2
8 G2R3| V.Yadav, A.Misra [2020].
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❑ The EOMS are:

RMN −
1
2

gMNR −
1

12

(
GMPQRG PQR

N −
1
8

GPQRSGPQRS
)

= −γl6p

[
gMN

2

(
J0 −

1
2

E8

)
+

δ

δgMN

(
J0 −

1
2

E8

)]
,

d ∗ G =
1
2

G ∧ G + 2κ2
11

(
2π2

κ2
11

) 1
3

X8,

where γ ≡ (4π)
2
3

(2π)432213 .

❑ Consider the following ansatz:

GMN = G(0)
MN + l6

p G(1)
MN ≡ G(0)

MN (1 + βfMN) = G(0)
MN + βFMN ,

CMNP = C(0)
MNP + l6

p C(1)
MNP ,

(M,N) = t , x1,2,3, r , θ1,2, ϕ1,2, ψ, x11. Utilizing X8 = 0 M.Dhuria, A.Misra [2013], it
was shown in V.Yadav, A.Misra [2020] that one can self-consistently set
C(1)

MNP = 0.
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Deconfinement Phase Transition in thermal QCD-like theories

from Witten’s Prescription E. Witten [1998], C.Herzog [2006]

❑ To compute the deconfinement temperature from gauge/gravity duality one has to know
what is gravity dual of corresponding gauge theory.

❑ Obtain the metric for thermal(relavant to T < Tc ) and blackhole(relavant to T > Tc )
backgrounds.

❑ Let βth and βBH are periodicities for thermal circle in thermal and blackhole background
and compute action densities for both backgrounds.Then use the following relation,

βBHS̃BH = βThS̃th
∣∣∣
βBH

√
GBHtt =βTh

√
GThtt

,

where S̃BH/th excludes the coordinate integral of x0.

❑ From the previous step we obtain relation between black hole horizon radius rh and IR cut
off for thermal background r0.

❑ Deconfinement temperature on gauge theory side is given by the following expression K.
Sil, A. Misra[2015]:

Tc =
rh

πL2
.
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Deconfinement Temperature from M Theory Dual Inclusive of

O(R4) Corrections

❑ If βBH and βTh are respectively the periodicitiees of the thermal circle in the black and

thermal M-theory backgrounds then at r = RUV, βBH
√

GBH
tt = βTh

√
GTh

tt . Now at
T = Tc E. Witten[1998],

βBH /

∫
M11

(
SBHEH + SBHGHYδ(r −RUV) + SBHO(R4)

)
= βTh /

∫
M̃11

(
SThEH + SThGHYδ(r −RUV) + SThO(R4)

)
,

where /
∫

excludes the coordinate integral w.r.t. x0.

❑ Since βBH =

(√
1 − r4

h
R4
UV

)−1

βTh, therefore,

(√
1 −

r4
h

R4
UV

)−1

/

∫
M11

(
SBHEH + SBHGHYδ(r −RUV) + SBHO(R4)

)
= /

∫
M̃11

(
SThEH + SThGHYδ(r −RUV) + SThO(R4)

)
.
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❑ On-shell action corresponding to eleven dimensional SUGRA action is,

Son−shellD=11 = −
1
2

[
−2S(0)

EH + 2S(0)
GHY

+β

(
20
11

S(1)
EH − 2

∫
M11

√
−g(1)R(0) + 2S(1)

GHY −
2
11

∫
M11

√
−g(0)gMN

(0)
δJ0

δgMN
(0)

)]
.

❑ Writing gMN = gMQGPMN (1 + βfMN), gMQGPMN being the MQGP metric worked out at O(β0)
in M.Dhuria, A.Misra [2013]; K.Sil, A.Misra[2015], and fMN are the O(β)-corrections;
fMN ≈ 0 in the UV GY, V. Yadav, A. Misra [2020].

❑ Partitioning r into the IR (r ∈ [rh,Rbh

D5/D5
=

√
3abh]) and the UV (r ∈ [Rbh

D5/D5
,Rbh

UV]),

utilizing the results of V. Yadav, A. Misra [2020] as regards O(R4) corrections to the

M-theory uplift of large-N thermal QCD-like cousins as worked out in M.Dhuria, A.Misra

[2013]; K.Sil, A.Misra [2015], and realizing the dominant contributions to the

EH/GHY/
√
−GJ0/

√
−GGMN δJ0

δGMN arise from the small-θ1,2 values, introduce polar

angular cut-offs ϵ1,2: θ1 ∈ [ϵ1, π − ϵ1] and θ2 ∈ [ϵ2, π − ϵ2].
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❑ For blackhole background UV finite on-shell action, which includes terms LO in

N, log
(

RUV
RD5/D5

)
and rh

RD5/D5
, in the neighborhood of the (θ1, θ2) = (ϵ1, ϵ2)-branch (near

which there is a decoupling of M5(t , x1,2,3, r) and M6(θ1, θ2, ϕ1, ϕ2, ψ, x11) K.Sil, A.Misra
[2015]), is (every terms in the on-shell actions appear as log(ϵ2)

log(ϵ1)
, we have written the final

results after setting ϵ1 = ϵ2 to ensure holographic IR regularization in the theory):

(
1 +

r4
h

2R4
UV

)
SBH

D=11, on−shellUV−�nite ∼
2κbhGHYMUVrh

4 log

(
RUV

Rbh

D5/D5

)
gs3/2N1/2

+

[
−2Cθ1xκ

IR√
G(1)R(0)

+
20
(
−Cbhzz + 2Cbhθ1z − 3Cbhθ1x

)
κβ, IREH

11

]

×
b2gs

3/2MNf
3rh

4 log3(N) log

(
rh

RD5/D5

)
log

(
1 − rh

RD5/D5

)
N1/2RD5/D5

4 β,

where CMN are constants of integration appearing (roughly) in the solutions of the EOMs of

fMN .
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❑ For thermal background:

SthermalD=11 ∼
2κth, β

0

GHY MUVr0
4 log

(
RUV

Rth

D5/D5

)
gUVs

3/2N1/2Rth

D5/D5
4 +

2gs
3/2κth, β

0

EH,IRMNf
3r0

2 log2(N)

N1/2Rth

D5/D5
2

× log

 r0

Rth

D5/D5

−
20βκIR, β

EH,thr0
3N1/2fx10x10 (r0)

11gs3/2MNf
5/3Rth

D5/D5
3
log

2
3 (N) log

(
r0

Rth

D5/D5

)β.

❑ On equating O(β0) terms for blackhole and thermal background, we need to solve the
following equation:

2κbhGHYMUVrh
4 log

(
RUV

Rbh

D5/D5

)
gs3/2N1/2

=

2κth, β
0

GHY MUVr0
4 log

(
RUV

Rth

D5/D5

)
gUVs

3/2N1/2Rth

D5/D5
4
log

+

2gs
3/2κth, β

0

EH,IRMNf
3r0

2 log2(N) log

(
r0

Rth

D5/D5

)
N1/2Rth

D5/D5
2 .
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❑ Now, one can show that near, e.g., (θ1, θ2) ∼ (ϵ1, ϵ2),
κ
th, β0
GHY

κ
th, β0
EH,IR

∼ 105, and hence, one can

drop the κth, β
0

EH,IR term. Therefore,

rh =

4

√
κ
th, β0
GHY

κ
bh, β0
GHY

r0Rbh

D5/D5
4

√√√√√√√√
log

 RUV

Rth

D5/D5


log

 RUV

Rbh

D5/D5


Rth

D5/D5

.

❑ Identifying r0
L2 with m0++

4 K. Sil, V. Yadav and A. Misra[2017], where m0++
is the mass of

0++ glueball and using Tc = rh
πL2 K. Sil, A. Misra[2015], Deconfinement temperature is

given by the following expression:

Tc =

4

√
κ
th, β0
GHY

κ
bh, β0
GHY

m0++Rbh

D5/D5
4

√√√√√√√√
log

 RUV

Rth

D5/D5


log

 RUV

Rbh

D5/D5


4πRth

D5/D5

.
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❑ Now equating O(β) term for blackhole and thermal background obtains:

fx10x10 (r0)

∼ −
b2gs

3M2Nf
14/3

(
rh

Rbh

D5/D5

)4

log3(N) log

(
r0

Rth

D5/D5

)
log

(
rh

Rbh

D5/D5

)
log

(
1 − rh

Rbh

D5/D5

)

κβ, IR
EH,thN

(
r0

Rth

D5/D5

)3

×
(
−11Cθ1xκ

IR√
G(1)R(0)

log3(N)− 10κβ, IR
EH,bh

(
−Cbhzz + 2Cbhθ1z − 3Cbhθ1x

))
,

with the understanding that one substitutes rh in terms of r0 as obtained in the previous
slide. Above equation relates O(R4) corrections to the thermal background along M theory
circle and combination of integrations constant appearing in the O(R4) corrections to the
black hole background along the compact part of non-compact four cycle in type IIB setup
around which flavor branes are wrapping. This relation is valid in the IR. Which is a version
of “UV-IR mixing".

❑ The aforementioned combination of integrations constant appearing in the O(R4)

corrections to the black hole background encodes information about the flavor branes in

parent type IIB dual. We refer this as “ Flavor Memory" effect in the context of M theory

dual.
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Effect of vorticity on the Deconfinement Temperature GY[2022]

❑ We can introduce rotation on the QGP side by the following
Lorentz tranformatons on the gravity dual side M. Bravo Gaete,
L. Guajardo, and M. Hassaine [2017]; C. Erices Gaete, and C. Martinez [2018].

t →
1√

1 − l2ω2

(
t + l2ωϕ

)
;ϕ→

1√
1 − l2ω2

(ϕ+ ωt) .

❑ We obtained the M theory metric in canonical form as given below.

ds2
11|BH = e− 2ϕIIA

3

[
1√

h(r , θ1,2)

(
−Y1(r)dt2 + Y2(r) (dϕ+ Y3(r)dt)2 +

(
dx1
)2

+
(

dx2
)2
)

+
√

h(r , θ1,2)

(
dr2

g(r)
+ ds2

IIA(r , θ1,2, ϕ1,2, ψ)

)]
+ e

4ϕIIA
3

(
dx11 + A

F IIB1 +F IIB3 +F IIB5
IIA

)2

where,

Y1(r) =
g(r)

(
1 − l2ω2)(

1 − g(r)l2ω2
) ,

Y2(r) =
l2
(
1 − g(r)l2ω2)(
1 − l2ω2

) ,

Y3(r) =
ω (1 − g(r))(
1 − g(r)l2ω2

) .
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❑ Hawking temperature of the black hole turns out to be X. Chen et al
[2021]:

T =

∣∣∣∣∣ κ2π
∣∣∣∣∣ =

∣∣∣∣∣ limr→rh −
1
2

√
Grr

−Ĝtt
Ĝtt , r

2π

∣∣∣∣∣
=

rh√
3π3/2

√
N
√

gs

(
1
γ
+
β

2

(
−CBHzz + 2CBHθ1z − 3CBHθ1x

))

where Ĝtt = −Y1(r), Ĝtt , r implies derivative of Ĝtt with respect to r , and γ = 1√
1−l2ω2

.

Since L4 = 4πgsN, therefore Hawking temperature of the rotating cylindrical black hole
turns out to be:

T ∼
( rh

πL2

)( 1
γ
+
β

2

(
−CBHzz + 2CBHθ1z − 3CBHθ1x

))
,

∼
( rh

πL2

)(√
1 − l2ω2 +

β

2

(
−CBHzz + 2CBHθ1z − 3CBHθ1x

))
,

= T (0)
(√

1 − l2ω2 +
β

2

(
−CBHzz + 2CBHθ1z − 3CBHθ1x

))
.

where T (0) was calculated in K. Sil and A. Misra [2015].O(β) correction to the Hawking
temperature had been calculated in small frequency limit. Since CBHzz = 2CBHθ1z and
CBHθ1x ≪ 1 V. Yadav and A. Misra [2020], therefore no O(β) correction to the Hawking
temperature.
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❑ At O(β0), UV-finite on-shell action for the M-theory rotating cylindrical black hole and
thermal background uplift are:

(
1 +

r4
h

2R4
UV

)
SBHD=11 ∼ λBHEH,IR

ϵγ8ω2MN3
f g3/2

s r4
h log3(N) log

(
rh

RBH

D5/D5

)
log

(
1 − rh

RBH

D5/D5

)
RBH

D5/D5
4N1/2

+λBHEH,UV

γ8lMUVr4
h log2

(
RUV

RBH

D5/D5

)
N1/2gUVs

3/2RBH

D5/D5
4

+ λBHGHY

lMUVr4
h log

(
RUV

RBH

D5/D5

)
N1/2RBH

D5/D5
4gUVs

3/2

where λBHEH,IR, λ
BH
EH,UV and λBHGHY are the numerical prefactors.

❑ At O(β0), UV-finite on-shell action for the M-theory cylindrical thermal background uplift is:

SthermalD=11 ∼
λthGHYMUV l r0

4 log

(
RUV

Rth

D5/D5

)
gUVs

3/2N1/2Rth

D5/D5
4 +

gs
3/2λthEH,IRMNf

3l r0
2 log2(N) log

(
r0

Rth

D5/D5

)
N1/2Rth

D5/D5
2

+

λthEH, UVMUVNUV
f l

(
− 121r0

4

16Rth

D5/D5
4 − 6r0

2

Rth

D5/D5
2 + 2

)
gUVs

1/2N
1
2

,

where λthGHY, λ
th
EH,IR and λthEH, UV are the numerical prefactors.
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❑ At the UV-cutoff GY,VY,AM[2021]:(
1 +

r4
h

2R4
UV

)
SBHD=11 = SthermalD=11 .

Since ω2 < 1, λBHGHY ∼ O(103)λBHEH,IR and λBHGHY ∼ O(10)λBHEH,UV, and
λthGHY ∼ O(103)λthEH,IR, λthGHY ∼ O(102)λthEH, UV, therefore, one is required to solve the
following equation:

λBHGHY

lMUVr4
h log

(
RUV

RBH

D5/D5

)
N1/2RBH

D5/D5
4gUVs

3/2
−
λthGHYMUV l r0

4 log

(
RUV

Rth

D5/D5

)
gUVs

3/2N1/2Rth

D5/D5
4 = 0.

❑ Solution to the above equation is:

rh =

4

√
λth
GHY

λBH
GHY

r0RBH

D5/D5
4

√√√√√√√√
log

 RUV

Rth

D5/D5


log

 RUV

RBH

D5/D5


Rth

D5/D5

.
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❑ Therefore, deconfinement temperature of the thermal QCD-like
theories in the presence vorticity is:

Tc(γ) =
rh

πL2

√
1 − l2ω2 = Tc(0)

√
1 − l2ω2,

where Tc(0) was calculated in GY,VY,AM[2021].
❑ Plot of ratio of deconfinement temperature in the presence and

absence of vorticity with angular velocity of rotating QGP is shown
below:

0.2 0.4 0.6 0.8 1.0
ω

0.2

0.4

0.6

0.8

1.0

Tc (γ)

Tc (0)

Figure: Plot of Tc(γ)
Tc(0)

versus ω.
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❑ Unwarped metric in the t − ϕ subspace can be rewritten as:

ds2 = −
(

1 −
r4
h

r4γ2

)
dT 2 + l2dΦ2,

where,

dT = dt −
l2r4

hωdϕ

r4 − r4
h
,

dΦ =
l2r4

hωdt

r4 − r4
h

+ dϕ.

❑ The O(β) corrected metric in the diagonal basis can be written as:

GM
MN = GMQGP

MN (1 + βfMN) ,

where fMN are given in VY,AM[2020].

❑ In the small ω limit γ = 1√
1−l2ω2

= 1, therefore results from O(β) contributions are same

as GY,VY,AM [2021].
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❑ We found that O(β) terms in the on-shell actions of the black hole
and thermal backgrounds are similar for both the cases, ω = 0
and ω ̸= 0, therefore again we observe the “UV-IR mixing" even in
the presence of rotating quark gluon plasma.
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Conjectural SL(2,Z) Completion of Type IIB Action and

Non-Renormalization Beyond 1 Loop at O(R4)M.B. Green and M.

Gutperle[1997]

❑ Complete effective R4 action in the Einstein’s frame,

SR4 = (α′)−1
[
aζ(3)τ3/2

2 + bτ−1/2
2 + ce2πiτ + · · ·

]
R4 ≡ (α′)−1f (τ, τ̄)R4,

where τ = τ1 + iτ2 = C0 + ie−ϕ.
❑ Complete expression for SR4 must be invariant under SL(2,Z) transformations:

τ → (aτ + b)(cτ + d)−1 (a, b, c, d ∈ Z : ad − bc = 1), which provides very strong
constraints on its structure.

❑ There is a simple function proposed by the authors that satisfies all these criteria, namely,

f (τ, τ̄) =
∑

(p,n) ̸=(0,0)

τ
3/2
2

|p + nτ |3

= 2ζ(3)τ3/2
2 +

τ
3/2
2

Γ(3/2)

∑
n ̸=0,p

∫ ∞

0
dyy1/2 exp

{
−y |p + nτ |2

}
.
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❑ Using the Poisson resummation formula, one obtains,

f (τ, τ̄) = 2ζ(3)τ3/2
2 +

2π2

3
τ
−1/2
2 + 2τ3/2

2

∑
m,n ̸=0

∫ ∞

0
dy exp

(
−
π2m2

y
+ 2πimnτ1 − yn2τ2

2

)
,

= 2ζ(3)τ3/2
2 +

2π2

3
τ
−1/2
2 + 8πτ1/2

2

∑
m ̸=0n≥1

∣∣∣m
n

∣∣∣ e2πimnτ1 K1(2π|mn|τ2)

= 2ζ(3)τ3/2
2 +

2π2

3
τ
−1/2
2

+4π3/2
∑

m,n≥1

(m
n3

)1/2
(e2πimnτ + e−2πimnτ̄ )

(
1 +

∞∑
k=1

(4πmnτ2)
−k Γ(k − 1/2)

Γ(−k − 1/2)

)

which includes a perturbative expansion in 1
τ2

of the non-perturbative instanton
contribution of charge mn.

❑ The first term corresponds to tree-level perturbative contribution, second term corresponds
to one-loop perturbative term and the third represents the infinite sequence of perturbative
corrections around the instantons of charge mn. Therefore (assuming the conjectured
SL(2,Z)-completion to be correct) in the zero-instanton sector, there are no perturbative
corrections figuring in the action up to O(R4), beyond one loop (as the non-perturbative
contributions begin at winding number (m)/instanton number 1).
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Consistency with MχPT

❑ The thermal supergravity background dual to type IIB (solitonic) D3-branes at low

temperatures, includes R2 × S1
(

1
MKK

)
, where MKK =

2r0
L2

(
1 +O

(
gsM2

N

))
. Solutions to

the EOMs of O(R4) corrections to the thermal SUGRA background was obtained by taking
g̃(r) → 1 in GY,V. Yadav, A.Misra[2021] and solutions to the same was obtained in

V.Yadav, G.Yadav, A.Misra[2020] by taking g̃(r) ≡ 1 − r4
0

r4 . By taking the MKK → 0 limit (to
recover a boundary four-dimensional QCD-like theory after compactifying on the base of a
non-Kähler warped resolved deformed conifold) of the results of V. Yadav and A. Misra;
GY, V.Yadav, A.Misra [2020] and comparing with the results obtained by setting

g̃(r) ≡ 1 − r4
0

r4 to unity O(R4)metric perturbations . We obtained:

Cthzz ∼

(
1
N

)3/4
r0

2Σ1

ϵ5gs7/2 logN2MNf
3α3
θ2

log(r0)
; Cthθ1z ∼

(
1
N

)3/4
r0

2Σ1

2ϵ5gs7/2 logN2MNf
3α3
θ2

log(r0)

Cthθ1x ∼

(
1
N

)7/6
Σ1

√
6π3ϵ11gs9/4 logN4Nf

3r0
5α7
θ1
α6
θ2

,

where CthMN are the integration constants appearing in the O(R4) corrections to the thermal

gravitational metric.
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❑ This thus confirms that Cthzz − 2Cthθ1z + 2Cthθ1x = 2Cthθ1x < 0

(Σ1 ≡ 19683
√

6α6
θ1

+ 6642α2
θ2
α3
θ1

− 40
√

6α4
θ2
< 0), which in V. Yadav, G. Yadav and A.

Misra[2020] was argued by requiring compatibility with phenomenological value of the
1-loop renormalized LEC appearing in the O(p4) SU(3) χPT

(
∇µU†∇µU

)2, where

∇µU ≡ ∂µU − iLµU + iURµ,U = e
2iπ
Fπ , (the lightest pseudo-scalar meson field)

π = 1√
2


1√
2
π0 + 1√

6
η8 + 1√

3
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η8 + 1√

3
η0 K 0

K− K̄ 0 − 2√
6
η8 + 1√

3
η0

, and

Lµ ≡ Vµ −Aµ,Rµ ≡ Vµ +Aµ constructed from the external vector Vµ and axial-vector
Aµ fields.
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Deconfinement Phase Transition in thermal QCD-like theories

from Entanglement Entropy

❑ We will deconfinement phase transition in thermal QCD-like theories similar to Klebanov,
Kutasov, Murugan [2007] by computing the entanglement entropies for the connected and
disconnected surfaces.

❑ Entanglement entropies for the connected and disconnected surfaces are (r∗ is the turning
point of the Ryu-Takayanagi surface):

Sdisconnected − SdisconnectedUV

2V1
∼ −gs

2M 2

√
1
N

Nf
8/3r4

0 log2(r0)(logN − 3 log(r0))
5/3;

Sconnected − SconnectedUV

2V1
≈ −gs

2/3MUVNUV
f

4/3r∗4 log
4
3 (N) log(r∗)N1/10,

where,

SdisconnectedUV ∼
gs

2/3MUVNUV
f

4
3 R4

UV (logN − 3 logRUV)
4
3 logRUV

N
1
2

,

SconnectedUV ∼ gs
2/3N3/20MUVNUV

f
4
3 R4

UV (logN)
4
3 logRUV.
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❑ As l increases, i.e., r∗ decreases and reaches Rth

D5/D5
, Sconnected changes from being

negative to vanishing and Sdisconnected stays negative implying disconnected region has
lesser entropy.

❑ At r∗ = rcriticial, SUV−Finite
connected

= SUV−Finite
disconnected

and rcritical is given by:

rcritical ∼
3√gsM1/4Nf

2/3 log
7
6 (N)

N3/20
r0.

❑ For N = 100,M = Nf = 3, gs = 0.1 − 1, rcriticial ∼ 3.8r0 and l(r = rcriticial) ∼ 5.4.

❑ For N = 100,MUV = NUV
f = 0.01,M = Nf = 3, and r0 = N−

fr0
3 , fr0 ≈ 1

(VY,GY,AM[2020]), we obtained the following plot for the entanglement entropies for the
connected and disconnected surface versus l . This graph depicts that l < lcrit and l > lcrit
correspond to confined and deconfined phases of thermal QCD-like theories:

Figure: Plot Sconnected (blue) and Sdisconnected(orange) versus l(r∗)
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Summary

❑ UV-IR mixing: By matching the actions at the deconfinement temperature of the
M theory uplifts of the thermal and black-hole backgrounds at the UV cut-off,
one sees that one obtains a relationship in the IR between the O(R4) corrections
to the M-theory metric along the M theory circle in the thermal background and
the O(R4) correction to a specific combination of the M-theory metric
components along the compact part of the four-cycle “wrapped" by the flavor
D7-branes of the type IIB (warped resolved deformed) conifold geometry.

❑ We found that deconfinement temperature of thermal QCD-like theories is
decreasing as the rotation of the QGP is increasing.

❑ Non-renormalization of Tc : The LO result for Tc also holds even after inclusion of
the O(R4) corrections. The dominant contribution from the O(R4) terms in the
large-N limit arises from the t8t8R4 terms, which from a type IIB perspective in
the zero-instanton sector, correspond to the tree-level contribution at O

(
(α′)3)

as well as one-loop contribution to four-graviton scattering amplitude. As from
the type IIB perspective, the SL(2,Z) completion of these R4 terms M.B. Green
and M. Gutperle[1997] suggests that they are not renormalized perturbatively
beyond one loop in the zero-instanton sector, this therefore suggests the
non-renormalization of Tc at all loops in M theory at O(R4).
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❑ MχPT-Tc Connection:

❑ As shown in V. Yadav, G. Yadav and A. Misra[2020], matching the
phenomenological value of the 1-loop renormalized coupling
constant correpsonding to the O(p4) SU(3) χPT Lagrangian term
“
(
∇µU†∇µU

)2" with the value obtained from the type IIA dual of
thermal QCD-like theories inclusive of the aforementioned O(R4)
corrections, required Cthzz − 2Cthθ1z + 2Cthθ1x < 0.

❑ By taking the MKK → 0 limit of R2 × S1( 1
MKK

) (to recover a
four-dimensional QCD-like theory at
∂M5(S1(x0)× R2 × S1( 1

MKK
)× R≥0),M5 obtained after integrating

out the base M6(θ1, θ2, x , y , z, x11) of the seven-fold M7 = R≥0 × M6
of G2-structure), remarkably, we not only verify
Cthzz −2Cthθ1z +2Cthθ1x < 0, but in fact obtain the values of Cthzz , Cthθ1z , Cthθ1x .
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❑ Flavor Memory Effect: For the blackhole background, a specific combination of
integration constants is appearing in M theory metric perturbations. These
integration constants are along compact part of the non-compact four cycle
wrapped by the flavor D7 brane in parent type IIB dual. We refer to this as the
"Flavor Memory" effect in the M theory uplift.

❑ There is phase transition at a critical value of l i.e. lcrit similar to Klebanov,
Kutasov, Murugan [2007]. In our case this is confinement-deconfinement phase
transition in thermal QCD-like theories.

❑ I highly acknowledge the DORA office, Indian Institute
of Technology Roorkee, for providing me the financial
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Thank you.


