Composite Dark Matter and Neutrino Masses from a Light Hidden Sector

Saereh Najjari

IOHANNES GUTENBERG UNIVERSITY MAINZ

WITH A. AHMED, Z. CHACKO, N. DESAI, S. DOSHI, C. KILIC, in preparation

INTRODUCTION

- Standard Model (SM) of particle physics is the most successful theory of elementary particles and their interactions.
- However, there are several puzzles/observations which are unanswered within the SM.

- Standard Model (SM) of particle physics is the most successful theory of elementary particles and their interactions.
- However, there are several puzzles/observations which are unanswered within the SM.
- Two of the most outstanding puzzles are
 - ► Dark matter (DM)
 - ► SM neutrino masses

- Standard Model (SM) of particle physics is the most successful theory of elementary particles and their interactions.
- However, there are several puzzles/observations which are unanswered within the SM.
- Two of the most outstanding puzzles are
 - ► Dark matter (DM)
 - ► SM neutrino masses
- Neutrino oscillations have shown that SM neutrinos have tiny but non-zero masses, $m_{\nu} \sim 0.1 \, \mathrm{eV}$.
- However, mechanism to generate such tiny neutrino masses is one of the main research topics of BSM physics.
- At present, the nature of the particles of which DM is composed remain unknown

■ We propose a new class of models that can account for both the observed abundance of DM and the smallness for neutrino mass.

- We propose a new class of models that can account for both the observed abundance of DM and the smallness for neutrino mass.
- In our framework DM candidate arises as a composite state of a strongly coupled hidden sector.

- We propose a new class of models that can account for both the observed abundance of DM and the smallness for neutrino mass.
- In our framework DM candidate arises as a composite state of a strongly coupled hidden sector.
- Hidden sector is approximately conformal in the UV, and compositeness scale lies at or below the weak scale.

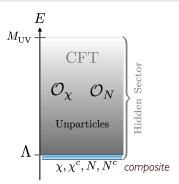
- We propose a new class of models that can account for both the observed abundance of DM and the smallness for neutrino mass.
- In our framework DM candidate arises as a composite state of a strongly coupled hidden sector.
- Hidden sector is approximately conformal in the UV, and compositeness scale lies at or below the weak scale.
- We construct this framework based on 5D AdS geometric setup and explore implication for experiments.

A CONFORMAL HIDDEN SECTOR

 We consider a hidden sector composed of a strongly coupled conformal field theory (CFT) with a relevant deformation O_{def},

$$\mathcal{L}_{\mathrm{UV}} \supset \mathcal{L}_{\mathrm{CFT}} + \lambda_{\mathrm{def}} \mathcal{O}_{\mathrm{def}}$$

• When the deformation grows large in the infrared, it causes the breaking of the conformal dynamics at a scale $\Lambda \lesssim v_{\rm SM}$.

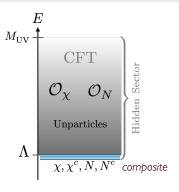


A Conformal Hidden Sector

 We consider a hidden sector composed of a strongly coupled conformal field theory (CFT) with a relevant deformation O_{def},

$$\mathcal{L}_{\mathrm{UV}} \supset \mathcal{L}_{\mathrm{CFT}} + \lambda_{\mathrm{def}} \mathcal{O}_{\mathrm{def}}$$

• When the deformation grows large in the infrared, it causes the breaking of the conformal dynamics at a scale $\Lambda \lesssim v_{\rm SM}$.



- Spectrum of hidden sector states includes three composite singlet neutrinos N_i and a composite DM χ along with their Dirac partners N_i^c and χ^c .
- lacksquare Low energy effective Lagrangian contains $(m_N,m_\chi\sim\Lambda)$

$$\mathcal{L}_{\rm IR} \supset i\bar{N}\bar{\sigma}^{\mu}\partial_{\mu}N + i\bar{N}^{c}\bar{\sigma}^{\mu}\partial_{\mu}N^{c} - (m_{N}N^{c}N + \text{h.c.}) + i\bar{\chi}\bar{\sigma}^{\mu}\partial_{\mu}\chi + i\bar{\chi}^{c}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{c} - (m_{\chi}\chi^{c}\chi + \text{h.c.})$$

SM is assumed to be elementary!

Composite Neutrino Portal

Hidden sector interacts with the SM only through the neutrino portal

$$\mathcal{L}_{\mathrm{UV}} \supset -rac{\hat{\lambda}}{M_{\mathrm{UV}}^{\Delta_N-3/2}} LH\mathcal{O}_N + \mathrm{h.c.}$$

- $lacktriangleright \mathcal{O}_N$ is a primary fermionic operator with scaling dimension Δ_N
- $ightharpoonup M_{
 m UV}$ is the UV cutoff of the theory and $\hat{\lambda} \sim 1$

Composite Neutrino Portal

Hidden sector interacts with the SM only through the neutrino portal

$$\mathcal{L}_{\mathrm{UV}} \supset -rac{\hat{\lambda}}{M_{\mathrm{UV}}^{\Delta_N-3/2}} LH\mathcal{O}_N + \mathrm{h.c.}$$

- $ightharpoonup \mathcal{O}_N$ is a primary fermionic operator with scaling dimension Δ_N
- $ightharpoonup M_{
 m UV}$ is the UV cutoff of the theory and $\hat{\lambda} \sim 1$
- At or below the conformal breaking scale Λ , the portal interaction:

$$\mathcal{L}_{\mathrm{IR}} \supset -\lambda \, LHN + \mathrm{h.c.} \hspace{1cm} ext{with} \hspace{1cm} \lambda \sim \hat{\lambda} igg(rac{\Lambda}{M_{\mathrm{UV}}} igg)^{\Delta_N - 3/2}$$

- lacksquare For $\Delta_N \geq 3/2$, the coupling λ is hierarchically small for $\Lambda \ll M_{\mathrm{UV}}$.
- Naturally small portal coupling λ provides a simple explanation for the both the smallness of the neutrino masses and the observed abundance of DM.

- We assume that the hidden sector possesses a global symmetry such that \mathcal{O}_N , and therefore N, carries charge -1.
- Due to neutrino portal interaction this symmetry can be subsumed into an overall lepton number symmetry, under which N, N^c carry charges -1, +1.

- We assume that the hidden sector possesses a global symmetry such that \mathcal{O}_N , and therefore N, carries charge -1.
- Due to neutrino portal interaction this symmetry can be subsumed into an overall lepton number symmetry, under which N, N^c carry charges -1, +1.
- To employ the *inverse seesaw* mechanism we add a lepton number violating deformation,

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\mu}^c}{M_{\mathrm{UV}}^{\Delta_{2N^c}-4}} \mathcal{O}_{2N^c} + \mathrm{h.c.}$$

where $\hat{\mu}^c \sim 1$.

• We assume \mathcal{O}_{2N^c} carries a charge of +2 under the global symmetry of the hidden sector, so that this deformation violates lepton number by two units.

- We assume that the hidden sector possesses a global symmetry such that \mathcal{O}_N , and therefore N, carries charge -1.
- Due to neutrino portal interaction this symmetry can be subsumed into an overall lepton number symmetry, under which N, N^c carry charges -1, +1.
- To employ the *inverse seesaw* mechanism we add a lepton number violating deformation,

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\mu}^c}{M_{\mathrm{UV}}^{\Delta_{2N^c}-4}} \mathcal{O}_{2N^c} + \mathrm{h.c.}$$

where $\hat{\mu}^c \sim 1$.

- We assume \mathcal{O}_{2N^c} carries a charge of +2 under the global symmetry of the hidden sector, so that this deformation violates lepton number by two units.
- In the low-energy effective theory at scale Λ , this deformation gives,

$$\mathcal{L}_{\mathrm{IR}} \supset -rac{\mu^c}{2}ig(N^cig)^2 + \mathrm{h.c.} \qquad ext{with} \qquad \mu^c \sim \hat{\mu}^c \Lambda \left(rac{\Lambda}{M_{\mathrm{UV}}}
ight)^{\Delta_{2N^c-4}}$$

■ The low-energy effective theory now contains all the ingredients required to realize *inverse seesaw* mechanism,

$$\mathcal{L}_{\rm IR} \supset i\bar{N}\bar{\sigma}^{\mu}\partial_{\mu}N + i\bar{N}^{c}\bar{\sigma}^{\mu}\partial_{\mu}N^{c} - \left[m_{N}N^{c}N + \frac{\mu^{c}}{2}(N^{c})^{2} + \lambda LHN + \text{h.c.}\right]$$

■ The low-energy effective theory now contains all the ingredients required to realize *inverse seesaw* mechanism,

$$\mathcal{L}_{\rm IR} \supset i\bar{N}\bar{\sigma}^{\mu}\partial_{\mu}N + i\bar{N}^{c}\bar{\sigma}^{\mu}\partial_{\mu}N^{c} - \left[m_{N}N^{c}N + \frac{\mu^{c}}{2}(N^{c})^{2} + \lambda LHN + \text{h.c.}\right]$$

■ By integrating out the composite singlet neutrinos N and N^c we obtain the SM neutrinos masses and their mixing with the composite states N,

$$egin{aligned} m_
u &= \mu^c \Big(rac{\lambda v_{
m EW}}{m_N}\Big)^2 & U_{N\ell} \equiv rac{\lambda v_{
m EW}}{m_N} \ & egin{aligned} oldsymbol{
u}_L & oldsymbol{
u}_L$$

• Smallness of the SM neutrino masses can naturally be explained by either small neutrino mixing λ or small lepton number violating coupling μ^c .

■ The low-energy effective theory now contains all the ingredients required to realize *inverse seesaw* mechanism,

$$\mathcal{L}_{\rm IR} \supset i\bar{N}\bar{\sigma}^{\mu}\partial_{\mu}N + i\bar{N}^{c}\bar{\sigma}^{\mu}\partial_{\mu}N^{c} - \left[m_{N}N^{c}N + \frac{\mu^{c}}{2}(N^{c})^{2} + \lambda LHN + \text{h.c.}\right]$$

■ By integrating out the composite singlet neutrinos N and N^c we obtain the SM neutrinos masses and their mixing with the composite states N,

$$m_
u = \mu^c \Big(rac{\lambda v_{
m EW}}{m_N}\Big)^2$$
 $U_{N\ell} \equiv rac{\lambda v_{
m EW}}{m_N}$ u_L u_L $u_{N\ell}$ u_L $u_{N\ell}$ $u_{L\ell}$ $u_{N\ell}$

- Smallness of the SM neutrino masses can naturally be explained by either small neutrino mixing λ or small lepton number violating coupling μ^c .
- We require Dirac mass $\lambda v_{\rm EW} \lesssim \Lambda$ and the Majorana mass $\mu^c \lesssim \Lambda$:

$$\frac{m_N}{v_{\rm EW}} \gtrsim \lambda \gtrsim \frac{\sqrt{m_\nu m_N}}{v_{\rm EW}}, \qquad 1 \gtrsim U_{N\ell} \gtrsim \sqrt{\frac{m_\nu}{m_N}}$$

COMPOSITE DM THROUGH THE NEUTRINO PORTAL

- In our framework, the neutrino portal interaction keeps the hidden sector in equilibrium with the SM in the early universe for $|U_{N\ell}|^2 \gtrsim \sqrt{\Lambda/4\pi M_{\rm Pl}}$.
- Composite nature of the fermions χ , χ^c and N, N^c allows non-renormalizable interactions in the low energy theory at the scale Λ ,

$$\mathcal{L}_{\rm IR} \supset -\frac{y_{\rm eff}^2}{\Lambda^2} (\bar{\chi}^c N)^2 + \cdots$$

where $y_{\rm eff} \sim 4\pi$.

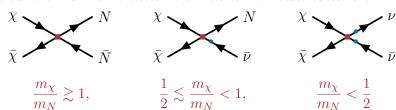
COMPOSITE DM THROUGH THE NEUTRINO PORTAL

- In our framework, the neutrino portal interaction keeps the hidden sector in equilibrium with the SM in the early universe for $|U_{N\ell}|^2 \gtrsim \sqrt{\Lambda/4\pi M_{\rm Pl}}$.
- Composite nature of the fermions χ , χ^c and N, N^c allows non-renormalizable interactions in the low energy theory at the scale Λ ,

$$\mathcal{L}_{\mathrm{IR}} \supset -\frac{y_{\mathrm{eff}}^2}{\Lambda^2} (\bar{\chi}^c N)^2 + \cdots$$

where $y_{\rm eff} \sim 4\pi$.

- DM abundance is set by the standard thermal freeze-out mechanism.
- The dominant DM annihilation channels to the visible sector are



DM Relic Abundance

The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for $T=T_{\rm fo}\sim m_{\chi}/10$, are

$$\langle \sigma_{\chi\bar\chi\to N\bar N} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4}{40\pi\,\Lambda^2}, \quad \langle \sigma_{\chi\bar\chi\to N\bar\nu} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4\,U_{N\ell}^2}{40\pi\,\Lambda^2}, \quad \langle \sigma_{\chi\bar\chi\to\nu\bar\nu} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4\,U_{N\ell}^4}{40\pi\,\Lambda^2}$$

■ The observed DM relic abundance is produced when $\langle \sigma v \rangle_{\rm fo} \sim 10^{-8} \; {\rm GeV}^{-2}$.

DM Relic Abundance

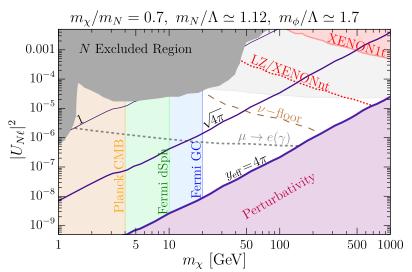
The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for $T=T_{\rm fo}\sim m_{\rm Y}/10$, are

$$\langle \sigma_{\chi\bar\chi\to N\bar N} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4}{40\pi\,\Lambda^2}, \quad \langle \sigma_{\chi\bar\chi\to N\bar\nu} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4\,U_{N\ell}^2}{40\pi\,\Lambda^2}, \quad \langle \sigma_{\chi\bar\chi\to\nu\bar\nu} v \rangle_{\rm fo} \sim \frac{y_{\rm eff}^4\,U_{N\ell}^4}{40\pi\,\Lambda^2}$$

- The observed DM relic abundance is produced when $\langle \sigma v \rangle_{\rm fo} \sim 10^{-8} \; {\rm GeV}^{-2}$.
- Note $\chi \bar{\chi} \to N \bar{N}$ process leads to DM under-abundance for strong coupling $y_{\rm eff} \sim 4\pi$ and $\Lambda \lesssim \mathcal{O}(100)$ GeV.
- Hence only viable DM production channels are $\chi \bar{\chi} \to N \bar{\nu}$ and $\chi \bar{\chi} \to \nu \bar{\nu}$.

COMPOSITE DM PHENOMENOLOGY

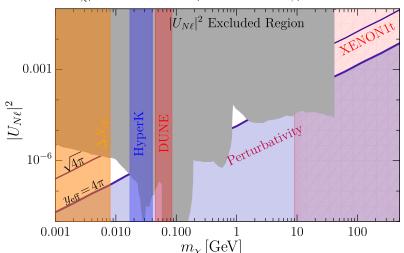
■ Summary for a benchmark in the DM mass range $1/2 \lesssim m_\chi/m_N \lesssim 1$ where the dominant DM annihilation channel is $\chi \bar{\chi} \to N \bar{\nu}$.



Composite DM Phenomenology

■ Summary for a benchmark in the DM mass range $m_\chi/m_N \lesssim 1/2$ where the dominant DM annihilation channel is $\chi \bar{\chi} \to \nu \bar{\nu}$.

$$m_{\chi}/m_N = 0.4, \ m_N/\Lambda \simeq 1.12, \ m_{\phi}/\Lambda \simeq 1.7$$



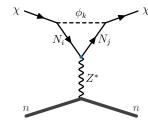
SUMMARY

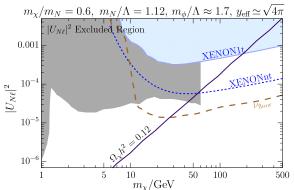
- We presented a class of models in which DM is a composite state of a strongly coupled hidden sector which interacts with the SM through the neutrino portal.
- DM relic abundance is set by annihilation into neutrinos.
- The neutrino portal also leads to the generation of SM neutrino masses through the *inverse seesaw* mechanism.
- We focused on the scenario in which the hidden sector is conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale.
- A holographic realization of this framework is studied based on 5D AdS geometry.
- This scenario can lead to signals in DM detection experiments as well as in colliders in the near future.

DM DIRECT DETECTION

- Dominant contribution to DM-Nucleon arises from Z-boson exchange.
- Spin-independent DM-Nucleon cross-

section is:
$$\sigma_{\chi n} \sim \frac{g^4\,y_{\rm eff}^4\,U_{N\ell}^4}{\pi(4\pi)^4}\frac{\mu_{\chi n}^2}{m_Z^4}$$



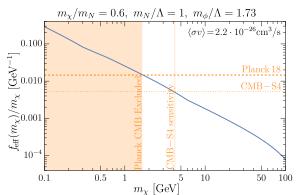


DM INDIRECT DETECTION: CMB CONSTRAINT

- For $\chi \bar{\chi} \to N \bar{\nu}$ channel, the final state N decays to visible end products such as electrons, photons etc., which could alter the CMB measurements.
- From the CMB data Planck collaboration constraints at 95% C.L. on

$$f_{\rm eff}(m_\chi) {\langle \sigma v \rangle \over m_\chi} < 3.2 \times 10^{-28} \, {\rm cm}^3 \, {\rm s}^{-1} \, \, {\rm GeV}^{-1}$$

 $f_{
m eff}(m_\chi)$ is the effective fraction of energy transferred to the IGM.

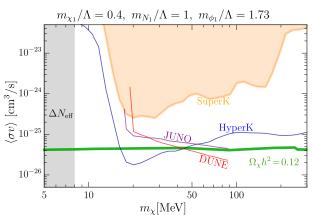


DM INDIRECT DETECTION: NEUTRINO-LINE SIGNALS

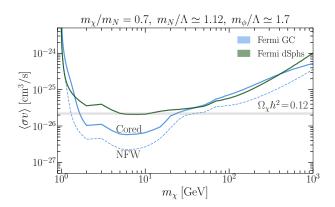
- The dominant annihilation channel $\chi \bar{\chi} \to N \bar{\nu}$ or $\chi \bar{\chi} \to \nu \bar{\nu}$, gives rise to monochromatic neutrinos in the final state.
- In dense DM matter environments e.g. the centre of our Milky Way galaxy such DM annihilations could lead to the possibility of observing neutrinoline signals in neutrino detection experiments.

DM INDIRECT DETECTION: NEUTRINO-LINE SIGNALS

- The dominant annihilation channel $\chi \bar{\chi} \to N \bar{\nu}$ or $\chi \bar{\chi} \to \nu \bar{\nu}$, gives rise to monochromatic neutrinos in the final state.
- In dense DM matter environments e.g. the centre of our Milky Way galaxy such DM annihilations could lead to the possibility of observing neutrinoline signals in neutrino detection experiments.



GAMMA RAY CONSTRAINTS

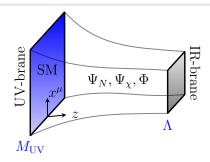


HOLOGRAPHIC REALIZATION

 The holographic model is realized in a 5D anti-de Sitter (AdS) space

$$ds^2 = \left(\frac{R}{z}\right)^2 \eta_{MN} \, dx^M dx^N$$

where
$$x^M = (x^\mu, z)$$
 and $R \le z \le R'$.



- The two branes correspond to the UV and IR scales, $M_{\rm UV} \equiv 1/R$ and $\Lambda \equiv 1/R'$.
- The SM is localized at the UV brane which corresponds to the elementary states in the 4D dual picture.
- New composite states corresponding the strongly coupled hidden sector are in the bulk and at the IR-brane.

HOLOGRAPHIC REALIZATION

Interaction between 5D neutrinos with the SM is

$$S_{\rm UV} \supset \int d^4x \int dz \left(\frac{R}{z}\right)^4 \delta(z-R) \sqrt{R} \,\hat{\lambda} \, LH \, \Psi_N(x,z)$$

- After choosing appropriate boundary conditions and KK-decomposing the bulk fields, 4D effective theory contains KK towers of singlet neutrinos N_n , N_n^c , fermion DM χ_n , χ_n^c , as well as the singlet scalar ϕ_n modes.
- Neutrino portal interaction is

$$S_{\rm UV} \supset \int d^4x \sum_n \lambda_n \, LH \, N_n(x)$$

where λ_n contains the bulk neutrino $\Psi_N(x,R)$ wave-function.

HOLOGRAPHIC REALIZATION

Interaction between 5D neutrinos with the SM is

$$S_{\rm UV} \supset \int d^4x \int dz \left(\frac{R}{z}\right)^4 \delta(z-R) \sqrt{R} \,\hat{\lambda} \, LH \, \Psi_N(x,z)$$

- After choosing appropriate boundary conditions and KK-decomposing the bulk fields, 4D effective theory contains KK towers of singlet neutrinos N_n , N_n^c , fermion DM χ_n , χ_n^c , as well as the singlet scalar ϕ_n modes.
- Neutrino portal interaction is

$$S_{\rm UV} \supset \int d^4x \sum_n \lambda_n LH N_n(x)$$

where λ_n contains the bulk neutrino $\Psi_N(x,R)$ wave-function.

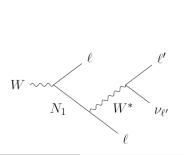
DM and singlet neutrino interact through Yukawa term.

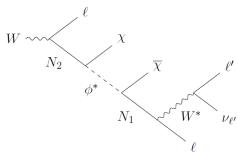
$$S_{\text{bulk}} \supset \int d^4x \int dz \sqrt{g} \,\hat{y} \sqrt{24\pi^3 R} \,\bar{\Psi}_{\chi}^c \Psi_N \,\Phi = \int d^4x \sum_{n,n,q} y_{npq} \,\bar{\chi}_n^c N_p \phi_q$$

Holographic model reproduces our 4D CFT results.

COLLIDER PHENOMENOLOGY

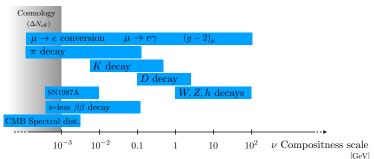
- At colliders and beam-dump experiments, DM can be pair produced in association with one or more composite singlet neutrinos.
- To discover the DM, it is therefore necessary to first discover the composite singlet neutrinos.
- lacksquare Searches for N are broadly divided based on whether N decays promptly in colliders, displaced, or is long lived.
- Collider signal processes of interest for this work are



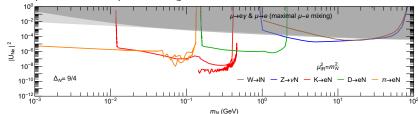


COMPOSITE NEUTRINO SIGNALS

■ There are various probes of neutrino compositeness scales Λ . [Chacko,Fox,Harnik,Liu:2012.01443]



lacksquare Direct probes of composite single neutrino N.



COLLIDER SIGNALS OF COMPOSITE DM AND NEUTRINO

