Magnetic moment of μ : the BMW lattice result (4.2 sigma, indeed?)

Z. Fodor

Penn State/Wuppertal/FZ Julich/Eotvos Budapest/UC San Diego Budapest-Marseille-Wuppertal Collaboration (BMW)

Nature 593 (2021) 7857 51

PASCOS'22, Heidelberg, July 25, 2022

Tensions in $(g-2)_{\mu}$: take-home message

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]

[Budapest-Marseille-Wuppertal-coll., Nature (2021)]

[Muon g-2 coll., Phys. Rev. Lett. 126, 141801 (2021)] $_{\sim}$

Sum over all known physics:

quantum electrodynamics (QED): photons, leptons

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- 3 strong (QCD): quarks and gluons

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- 3 strong (QCD): quarks and gluons
- [2006.04822] White Paper of Muon g-2 Theory Initiative

- quantum electrodynamics (QED): photons, leptons
- electroweak (EW): W, Z bosons, neutrinos, Higgs
- 3 strong (QCD): quarks and gluons
- [2006.04822] White Paper of Muon g-2 Theory Initiative

	$a_{\mu} \times 10^{-10}$
QED	11658471.9(0.0)
electroweak	15.4(0.1)
strong	693.7(4.3)
total	11659181.0(4.3)

• $a_u^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- consistent with new FNAL experiment

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- consistent with new FNAL experiment
- 2.0 σ larger than [DHMZ'19], 2.5 σ than [KNT'19]

$a_{\mu}^{LO\text{-HVP}}$ from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

aμCO-HVP from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

$$C(t) = \langle J_{\mu}(t)J_{\nu}(0)\rangle$$

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

$$C(t) = \langle J_{\mu}(t)J_{\nu}(0)\rangle$$

$$a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^{\infty} dt \ K(t) \ C(t)$$

K(t) describes the leptonic part of diagram

● 6 lattice spacings: 0.13 fm – 0.064 fm → controlled continuum limit

● 6 lattice spacings: 0.13 fm – 0.064 fm → controlled continuum limit

■ Box size: L ~ 6 fm

● 6 lattice spacings: 0.13 fm – 0.064 fm → controlled continuum limit

• Box size: $L \sim 6 \, \text{fm}$

 $L \sim 11 \, \text{fm}$ at one lattice spacing \longrightarrow FV effects

● 6 lattice spacings: 0.13 fm – 0.064 fm → controlled continuum limit

Box size: $L \sim 6 \, \text{fm}$

 $L \sim 11 \, \text{fm}$ at one lattice spacing \longrightarrow FV effects

 $1 \text{ fm} = 10^{-15} \text{ m} \sim \text{size of proton}$

- ullet 6 lattice spacings: 0.13 fm 0.064 fm \longrightarrow controlled continuum limit
- Box size: $L \sim 6 \, \text{fm}$

$$L \sim 11 \, \text{fm}$$
 at one lattice spacing \longrightarrow FV effects

1 fm $= 10^{-15}$ m \sim size of proton

Quark masses bracketing their physical values

- ullet 6 lattice spacings: 0.13 fm 0.064 fm \longrightarrow controlled continuum limit
- Box size: $L \sim 6 \, \text{fm}$

$$L \sim 11 \, \text{fm}$$
 at one lattice spacing \longrightarrow FV effects

1 fm
$$= 10^{-15}$$
 m \sim size of proton

Quark masses bracketing their physical values

	β	a[fm]	$L \times T$	#conf
	3.7000	0.1315	48×64	904
	3.7500	0.1191	56 × 96	2072
	3.7753	0.1116	56 × 84	1907
	3.8400	0.0952	64×96	3139
•	3.9200	0.0787	80 × 128	4296
•	4.0126	0.0640	96×144	6980

New challenges

- physical value of m_{μ}
- physical values of m_{π} , m_K

- physical value of m_{μ}
- physical values of m_{π} , m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$

- physical value of m_{μ}
- physical values of m_{π} , m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
- For final results: M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{lat}/M_{\Omega}^{exp}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate m_q dependence
 - Can be precisely determined on the lattice

- physical value of m_{μ}
- physical values of m_{π} , m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
 - **1** For final results: M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate m_q dependence
 - Can be precisely determined on the lattice
 - For separation of isospin breaking effects: w₀ scale setting
 - Moderate m_a dependence
 - Can be precisely determined on the lattice
 - No experimental value
 - \longrightarrow Determine value of w_0 from $M_{\Omega} \cdot w_0$

$$w_0 = 0.17236(29)(63)[70] \text{ fm}$$

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0)\rangle$ grows for large distances

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0)\rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \le C(t) \le C(t_c) e^{-E_{2\pi}(t-t_c)}$$

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0)\rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

→ few permil level accuracy on each ensemble

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\text{ref}} = 6.272\,\text{fm}$

 $L_{\text{big}} = 10.752\,\text{fm}$

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\text{ref}} = 6.272\,\text{fm}$

$$L_{\text{big}}=10.752\,\text{fm}$$

- 1. $a_{\mu}(\text{big}) a_{\mu}(\text{ref})$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \, \text{fm}$
 - perform analytical computations to check models

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\text{ref}} = 6.272\,\text{fm}$

$$L_{\text{big}} = 10.752\,\text{fm}$$

- 1. $a_{\mu}(\text{big}) a_{\mu}(\text{ref})$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \, \text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
18.1(2.0) _{stat} (1.4) _{cont}	11.6	15.7	17.8	16.7	15.2

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\text{ref}} = 6.272\,\text{fm}$

$$L_{\text{big}} = 10.752\,\text{fm}$$

- 1. $a_{\mu}(\text{big}) a_{\mu}(\text{ref})$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \, \text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
18.1(2.0) _{stat} (1.4) _{cont}	11.6	15.7	17.8	16.7	15.2

- 2. $a_{\mu}(\infty) a_{\mu}(\text{big})$
 - use models for remnant finite-size effect of "big" ∼ 0.1%

Isospin breaking effects

• Include leading order IB effects: $O(e^2)$, $O(\delta m)$

• Restrict correlator to window between $t_1 = 0.4 \, \text{fm}$ and $t_2 = 1.0 \, \text{fm}$

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

ullet Less challenging than full a_{μ}

• Restrict correlator to window between $t_1 = 0.4 \, \text{fm}$ and $t_2 = 1.0 \, \text{fm}$

- ullet Less challenging than full a_μ
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

• Restrict correlator to window between $t_1 = 0.4 \, \text{fm}$ and $t_2 = 1.0 \, \text{fm}$

- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

• Restrict correlator to window between $t_1 = 0.4 \, \text{fm}$ and $t_2 = 1.0 \, \text{fm}$

- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Final result

Tensions: take-home message

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

• Hadronic light-by-light (HLbL, $(\frac{\alpha}{\pi})^3$)

- $\begin{array}{ll} \bullet & \text{pheno} & a_{\mu}^{HLbL} = 9.2 \text{(1.9)} \\ & \text{[Colangelo, Hoferichter, Kubis, Stoffer et al '15–'20]} \end{array}$
- lattice $a_{\mu}^{\text{HLbL}} = 7.9(3.1)(1.8) \text{ or } 10.7(1.5)$

[RBC/UKQCD '19 and Mainz '21]

Optical theorem

Optical theorem

Use $e^+e^- \rightarrow \text{had}$ data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

Optical theorem

Use $e^+e^- \to had$ data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

$$a_{\mu}^{ extsf{LO-HVP}} = \left(rac{lpha}{\pi}
ight)^{\!2} \int rac{ds}{s^2} extsf{K}_{\!\mu}(s) extsf{R}(s)$$

Optical theorem

Use $e^+e^- \rightarrow \text{had}$ data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

$$a_{\mu}^{ extsf{LO-HVP}} = \left(rac{lpha}{\pi}
ight)^{\!2} \int rac{ds}{s^2} extsf{K}_{\!\mu}(s) extsf{R}(s)$$

LO	[Jegerlehner '18]	688.1(4.1)	0.60%
LO	[Davier et al '19]	693.9(4.0)	0.58%
LO	[Keshavarzi et al '19]	692.78(2.42)	0.35%
LO	[Hoferichter et al '19]	692.3(3.3)	0.48%
NLO	[Kurz et al '14]	-9.87(0.09)	
NNLO	[Kurz et al '14]	1.24(0.01)	

Depending on the action: topology is frozen for a<0.05 fm

Depending on the action: topology is frozen for a<0.05 fm ⇒ open boundary condition (CLS lattice group)

Depending on the action: topology is frozen for a<0.05 fm ⇒ open boundary condition (CLS lattice group)

Take the smallest lattice spacing of us of 0.064 fm

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

Depending on the action: topology is frozen for a<0.05 fm \implies open boundary condition (CLS lattice group) Take the smallest lattice spacing of us of 0.064 fm Topological charge at a Wilson-flow time of $\sqrt{8t} \approx 0.6$ fm

The integrated autocorrelation time of Q is 19(2) trajectories.

Crosscheck - overlap

Crosscheck - overlap

- compute a_{μ,win} with overlap valence
- local current instead of conserved → had to compute Z_V
- ullet cont. limit in L=3 fm box consistent with staggered valence

