The inverse seesaw family: Dirac & Majorana

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

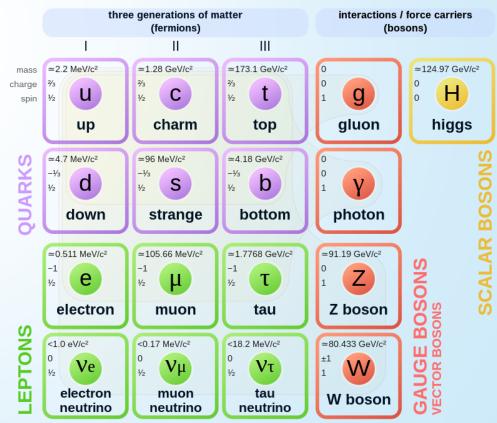
Salvador Centelles Chuliá (MPIK Heidelberg) Rahul Srivastava (Bhopal university) Avelino Vicente (IFIC Valencia)

2204.12517

PARTICLES STRINGS 25-29 JULY 2022 - MPIK - HEIDELBERG - GERMANY

The Standard Model and its drawbacks

- The SM is one of the most precise theories of history.
- Yet we have very well stablished observational proof of its incompleteness:
 - . Neutrino masses.
 - Dark matter.
 - Matter-anti matter asymmetry.
 - Anomalies? B anomalies, g-2
 Xenon 1T, CDF-II mW, short
 baseline neutrino oscillations...



Standard Model of Elementary Particles

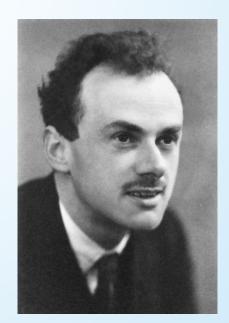
Neutrino masses

• SM predicts massless neutrinos due to no v_R .

- An extension of the SM accounting for neutrino masses must answer two additional questions.
 - Neutrino nature: Dirac/Majorana.
 - Smallness of neutrino mass.

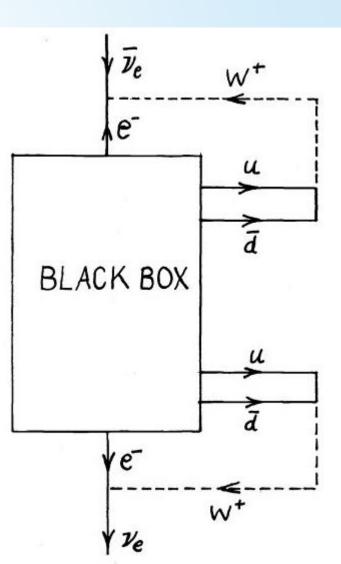
Neutrino nature

- All charged fermions are Dirac particles. What about neutrinos?
- Deeply intertwined with the mass generation and lepton number.
 - Dirac neutrinos need a protecting symmetry.



Neutrino nature

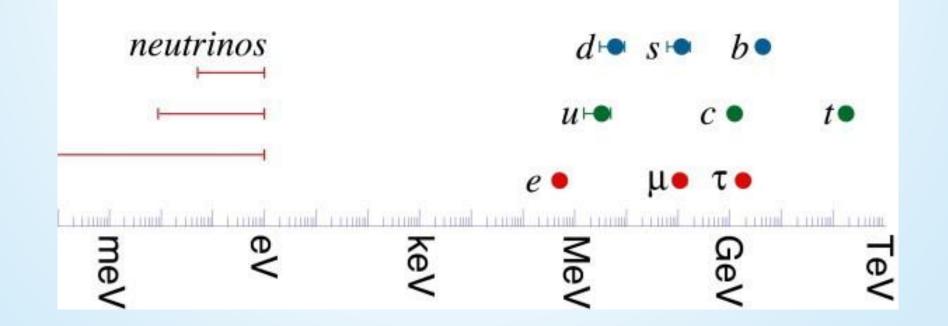
- Multiple examples of well motivated models for both cases.
- Confusion theorem: difference $\propto m_{\nu}$ (Kayser, Gibrat-Debu and F. Perrier 1989)
- Our best chance may be to detect voee (Schechter-Valle 1982)



Smallness of neutrino mass

• Charged lepton masses are hierarchichal respect one another (part of the flavour problem). • ${}^{m_t}/m_o \approx 10^5$

• But neutrinos are much lighter $m_e/m_v > 10^6$



Smallness of neutrino mass

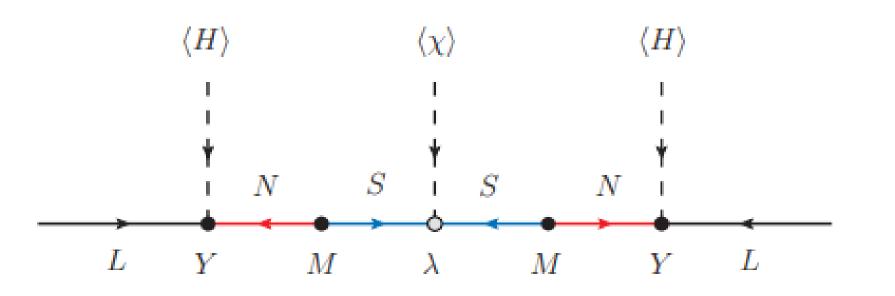
- The following 'smallness mechanisms' are used in the literature:
 - . Seesaw mechanisms: $m_{\nu} \propto {}^1/_{\Lambda}$, $\Lambda \gg \Lambda_{EW}$.
 - Loop suppression: $1/(4\pi)^2$ per loop.
 - Naturalness mechanisms: symmetry protects smallness of a parameter μ 'a la 't Hooft' ('t Hooft 1980). $m_{\nu} \propto \mu$.
 - . Combinations of the above.

Inverse seesaw mechanism

- Requirements in order to have an inverse seesaw mechanism
 - Presence of a symmetry-breaking parameter μ . In the limit $\mu \rightarrow 0$ we recover a bigger symmetry. Could be explicit or **spontaneous** breaking. There could be multiple μ_i .
 - $m_v \propto \mu_i$.
 - Extended fermion sector.
- Nice features: low scale models and rich pheno! E.g. collider signatures, $\mu^- \rightarrow e^- \gamma \dots$

Vanilla inverse seesaw

- Mohapatra, Valle 1986.
- The protecting symmetry is Lepton number.
- Spontaneous breaking version: the vev of a singlet χ breaks L in two units, i.e. $U(1)_L \xrightarrow{\langle 0|\chi|0\rangle} Z_2$.



Vanilla inverse seesaw

- Mohapatra, Valle 1986.
- Interesting pheno: Majoron, light scalar, cLFV...

$$\mathcal{L}_m = \left(ar{
u}^c \ ar{N}^c \ ar{S}^c
ight) egin{pmatrix} 0 & Y v & 0 \ Y^T v & \mu' & M^T \ 0 & M & \mu \end{pmatrix} egin{pmatrix}
u \ N \ S \end{pmatrix} \qquad m_
u = -Y^2 \, rac{v^2 \, \mu}{M^2} \ M^2 \, .$$

Fields	${\rm SU}(2)_L \otimes {\rm U}(1)_Y$	$\mathrm{U}(1)_{\mathrm{B-L}}\rightarrow\mathbb{Z}_2$	Fields	${\rm SU}(2)_L \otimes {\rm U}(1)_Y$	$U(1)_{B-L}\rightarrow\mathbb{Z}_2$
L	(2, -1/2)	$-1 \rightarrow -1$			
N	(1, 0)	$1 \rightarrow -1$	S	(1 ,0)	$-1 \rightarrow -1$
Н	(2, 1/2)	$0 \rightarrow 1$	X	(1 ,0)	$2 \rightarrow 1$

Simplest Dirac inverse seesaw

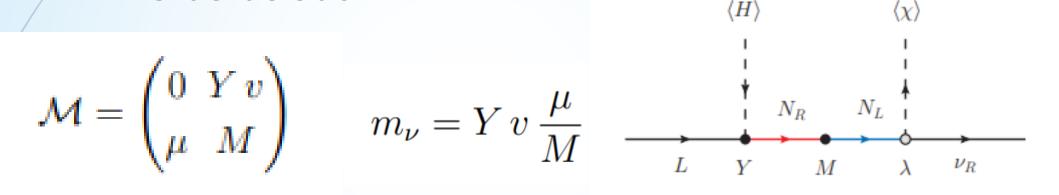
- We now build the analogous Dirac version.
- We choose the 445 B-L as protecting symmetry (Montero, Pleitez 2009; Ma, Srivastava 2015)
 - SM leptons ~ -1 .
 - SM quarks ~ $^{1}/_{3}$.
 - $(v_{R1}, v_{R2}, v_{R3}) \sim (-4, -4, 5).$
 - . New fermions beyond SM come as VL pairs.

445 B-L solution

- Properties of the 445 solution:
 - It is anomaly free. Can be gauged (removes the Diracon, Z' pheno).
 - Leads to massless neutrinos if exact, Dirac neutrinos if broken in three units $U(1)_{B-L} \rightarrow Z_3$. Forbids Majorana terms.
 - Can stabilize DM on its own (Bonilla, SCC, Cepedello, Peinado, Srivastava 2018).
 - In our inverse seesaw setup protects smallness of neutrino mass.

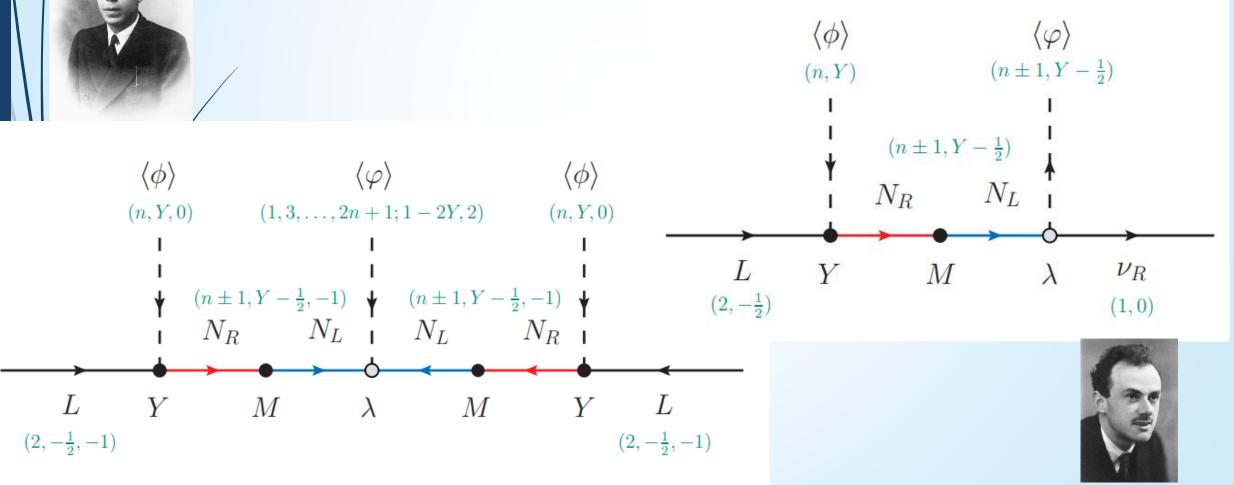
Simplest Dirac inverse seesaw

 Similar particle content as the Majorana inverse seesaw

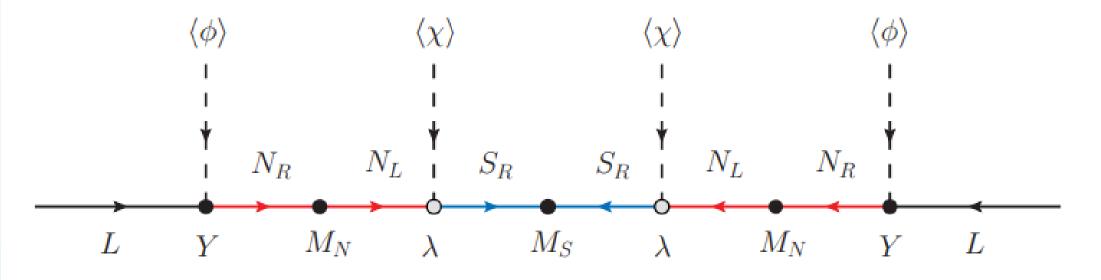


	Fields	$\rm SU(2)_L \otimes \rm U(1)_Y$	$\mathrm{U}(1)_{\mathrm{B-L}}\rightarrow\mathbb{Z}_3$	Fields	$SU(2)_L \otimes U(1)_Y$	$U(1)_{B-L} \rightarrow \mathbb{Z}_3$
Fermions	L_i	(2, -1/2)	$-1 \rightarrow \omega^2$	ν_R	(1, 0)	$(-4, -4, 5) \rightarrow \omega^2$
Ferre	N_L	(1, 0)	$-1~ ightarrow~\omega^2$	N_R	(1, 0)	$-1~ ightarrow~\omega^2$
Scalars	Н	(2 , 1/2)	$0 ~ ightarrow ~\omega^0$	x	(1, 0)	$3~ ightarrow~\omega^0$

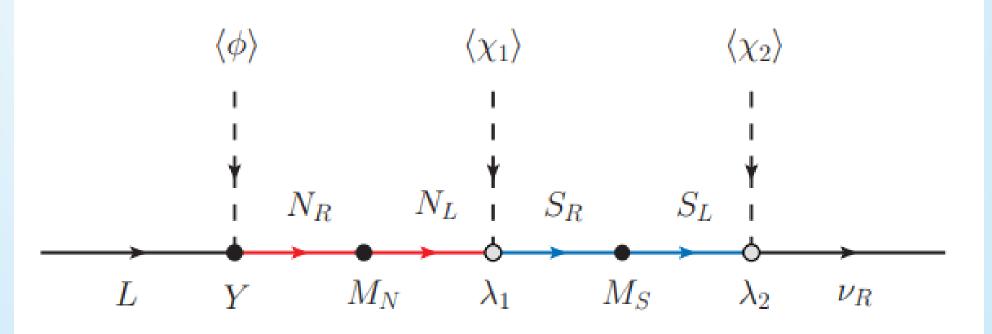
- We can increase the SU(2) multiplicity.
- Richer collider signatures.



- We can also obtain extra suppression to neutrino mass with a double (and triple etc) seesaw.
- In the Majorana case one has to distinguish between the 2n and 2n+1 case.



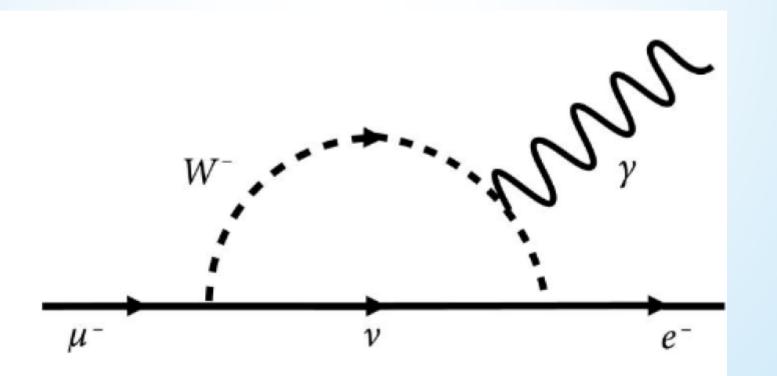
- In the Dirac case one can describe the nth case directly.
- In all cases the symmetry assignment plays a crucial role!



Model	m_{ν} formula	New fermions	New scalars
Majorana $(2n - 1)$ th inverse seesaw	$Y^2 v^2 \frac{\mu_n}{M_n^2} \prod_{i=1}^{i=n-1} \frac{\mu_i^2}{M_i^2}$	n VL pairs	n scalars
Majorana $2n$ th inverse seesaw	$Y^2 v^2 \frac{1}{M_{n+1}} \prod_{i=1}^{i=n} \frac{\mu_i^2}{M_i^2}$	$n~\mathrm{VL}$ pairs and a Weyl fermion	n scalars
Dirac n th inverse seesaw	$Yv\prod_{i=1}^{i=n}rac{\mu_i}{M_i}$	n VL pairs	n scalars

$\mu^- \rightarrow e^- \gamma$

- Enhanced $\mu^- \to e^- \gamma$ in all the models $G_{\mu e} \sim \left(\frac{v Y}{M}\right)^2$.
- But the meaning of Y & M changes from model to model.



$\mu^- \rightarrow e^- \gamma$

Majorana (2n-1)th inverse seesaw:

•
$$G_{\mu e} \sim m_{\nu} \frac{1}{\mu_n} \frac{M_n^2}{M_1^2} \prod_{i=1}^{i=n-1} \frac{M_i^2}{\mu_i^2}$$

Majorana nth inverse seesaw:

•
$$G_{\mu e} \sim m_{\nu} \frac{M_{n+1}}{M_1^2} \prod_{i=1}^{i=n} \frac{M_i^2}{\mu_i^2}$$

• Dirac nth inverse seesaw:

•
$$G_{\mu e} \sim m_{\nu}^2 \frac{1}{M_1^2} \prod_{i=1}^{i=n} \frac{M_i^2}{\mu_i^2}$$

2011.06609

Conclusions

- The inverse seesaw model provides a very well motivated neutrino mass generation mechanism. Low scale seesaw!
- We provide the Dirac neutrino version.
- The B-L 445 solution plays a crucial role in these constructions.
- We show some generalizations with richer collider phenomenology and further suppresions of neutrino masses.

Thank you for your attention!

Back up: Majorana

Name of the model	ϕ	N_L and N_R	$\varphi ~(\mu\text{-term})$
Type I inverse seesaw - $(2, 1, 0)$	(2, 1/2) = H	(1, 0)	(1,0)
Type III inverse seesaw - $(2, 1, 0)$	(2, 1/2) = H	(3, 0)	(1,0)
Type III inverse seesaw - $(2, 5, 0)$	(2, 1/2) = H	(3, 0)	(5 ,0)
Type III inverse seesaw - (2, 5, 2)	$(2, -1/2) = H^c$	(3, -1)	(5, 2)
Type III inverse seesaw - (4, 5, 1-2Y)	(4, Y=-1/2, 3/2)	(3, Y-1/2)	(5 , 1-2Y)
Type IV inverse seesaw - (3, 7, 1-2Y)	$(3, Y = 0, \pm 1)$	(4, Y - 1/2)	(7, 1 - 2Y)
Type V inverse seesaw - (4, 1, 0)	(4, 1/2)	(5, 0)	(1,0)
Type V inverse seesaw - (4, 5 or 9, 0)	(4, 1/2)	(5, 0)	(5 or 9 , 0)
Type V inverse seesaw - (4, 5 or 9, 1-2Y)	(4, Y=-1/2, 3/2)	(5, Y-1/2)	(5 or 9 , 1-2Y)
Type V inverse seesaw - (4, 9, 4)	(4, -3/2)	(5, -2)	(9 , 4)

Back up: Dirac

Name of the model	N_L and N_R	ϕ	$\varphi ~(\mu\text{-term})$
Standard Dirac Inverse seesaw	(1, 0)	(2, 1/2)	(1, 0)
Type-III Dirac Inverse seesaw	(3, 0)	(2, 1/2)	(3, 0)
Type-III Dirac Inverse seesaw variant I	(3, -1)	(2, -1/2)	(3, -1)
Type-III Dirac Inverse seesaw variant II	(3, 1)	(4, 3/2)	(3 ,1)
Exotic or Type IV Dirac inverse seesaw	(4, Y - 1/2)	$({\bf 3},Y=0,\pm 1)$	(4, Y - 1/2)
Type-V Dirac Inverse seesaw	(5, 0)	(4, 1/2)	(5,0)
Type-V Dirac Inverse seesaw variant I	(5, 1)	(4, 3/2)	(5, 1)
Type-V Dirac Inverse seesaw variant II	(5, -1)	(4, -1/2)	$({f 5},-1)$
Type-V Dirac Inverse seesaw variant III	(5, -2)	(4, -3/2)	(5, -2)

Table VI: A few examples of the generalized Dirac inverse seesaw.

Back up: $\mu^- \rightarrow e^- \gamma$

2 Majorana inverse seesaw

In the canonical Majorana inverse seesaw the neutrino mass matrix is given by

$$\mathcal{L}_m = \begin{pmatrix} \bar{\nu}^c & \bar{N}^c & \bar{S}^c \end{pmatrix} \begin{pmatrix} 0 & Yv & 0\\ Y^Tv & \mu' & M^T\\ 0 & M & \mu \end{pmatrix} \begin{pmatrix} \nu\\ N\\ S \end{pmatrix}.$$
(19)

Identifying the blocks with M and M_D of the previous section we find

$$m_{\nu} = (Yv \ 0) \begin{pmatrix} \mu' & M^T \\ M & \mu \end{pmatrix}^{-1} \begin{pmatrix} Y^T v \\ 0 \end{pmatrix}$$
(20)

$$m_{\nu} \sim Y^2 \frac{v^2 \mu}{\mu \mu' - M^2} \sim Y^2 \frac{v^2 \mu}{M^2}$$
 (21)

$$U_{\rm mix} = m_D^* M^{-1} \sim \left(\frac{vY\mu}{M^2}, \frac{vY}{M}\right) \sim \frac{vY}{M}$$
(22)

$$G_{\mu e} \sim \left(\frac{vY}{M}\right)^2 \sim m_{\nu}/\mu$$
 (23)

Back up: $\mu^- \rightarrow e^- \gamma$

3 Majorana double inverse seesaw

$$\mathcal{L}_{m} = \begin{pmatrix} \bar{L}^{c} & \bar{N}_{R} & \bar{N}_{L}^{c} & \bar{S}_{R} \end{pmatrix} \begin{pmatrix} 0 & Y v & 0 & 0 \\ Y^{T} v & 0 & M_{N} & \mu' \\ 0 & M_{N}^{T} & 0 & \mu \\ 0 & \mu'^{T} & \mu^{T} & M_{S} \end{pmatrix} \begin{pmatrix} L \\ N_{R}^{c} \\ N_{L} \\ S_{R}^{c} \end{pmatrix}$$

$$m_{\nu} = (Yv \ 0 \ 0) \begin{pmatrix} 0 & M_{N} & \mu' \\ M_{N}^{T} & 0 & \mu \\ \mu^{T'} & \mu^{T} & M_{S} \end{pmatrix}^{-1} \begin{pmatrix} Y^{T}v \\ 0 \\ 0 \end{pmatrix}$$
$$m_{\nu} \sim Y^{2}v^{2} \frac{\mu^{2}}{2M_{N}\mu\mu' - M_{N}^{2}M_{S}} \sim Y^{2}v^{2} \frac{\mu^{2}}{M_{N}^{2}M_{S}}$$
$$U_{\text{mix}} = m_{D}^{*}M^{-1} \sim \left(\frac{vY\mu^{2}}{M_{N}^{2}M_{S}}, \frac{vY}{M_{N}}, \frac{vY\mu}{M_{N}M_{S}}\right) \sim \frac{vY}{M_{N}}$$
$$G_{\mu e} \sim \left(\frac{vY}{M_{N}}\right)^{2} \sim m_{\nu}M_{S}/\mu^{2}$$

Back up: $\mu^- \rightarrow e^- \gamma$

6 Dirac simple inverse seesaw

$$\mathcal{M} = (\bar{L} \quad \bar{N}_L) \begin{pmatrix} 0 & Y v \\ \mu & M \end{pmatrix} \begin{pmatrix} \nu_R \\ N_R \end{pmatrix}$$
$$m_{\nu} \sim Y v \frac{\mu}{M}$$
$$U_{\text{mix}} \sim \frac{vY}{M}$$
$$G_{\mu e} \sim m_{\nu}^2/\mu^2$$

7 Dirac double inverse seesaw

$$\mathcal{L}_{m} = \left(\bar{\nu}_{L} \quad \bar{N}_{L} \quad \bar{S}_{L} \right) \begin{pmatrix} 0 & Y v & 0 \\ 0 & M_{N} & \mu_{1} \\ \mu_{2} & \mu_{1}' & M_{S} \end{pmatrix} \begin{pmatrix} \nu_{R} \\ N_{R} \\ R \end{pmatrix}$$
$$m_{\nu} \sim Y v \frac{\mu_{1}\mu_{2}}{M_{N} M_{S}}$$
$$U_{\text{mix}} \sim \frac{vY}{M_{N}}$$
$$G_{\mu e} \sim \frac{m_{\nu}^{2}}{M_{1}^{2}} \frac{M_{1}^{2}}{\mu_{1}^{2}} \frac{M_{2}^{2}}{\mu_{2}^{2}}$$