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There is a distinction of primordial black holes
being the dark matter (ie. all of it) or a part of it;
the latter could well be both microscopic and
macroscopic.
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*since most conference participants work on particle dark matter
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% Black holes formed in the early Universe (in particular: non-stellar).

% First proposed by Novikov and Zel'dovi¢ in the late 1960th,
but their conclusion was negative for the existence of PBHs.
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% Conclusion disproved by Carr & Hawking (1974),
reinvigorated PBH research (nearly 2000 papers to date).
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LPBH Formation M w@zﬂm

% Large density perturbations (inflation)

W Pressure reduction

[Byrnes et al. 2018]
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% Bubble collisions
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% Quark confinement i
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% Q-balls, Multiverse...
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PBH Formation — Rare Events

P(0)

Fraction of collapsed
horizon patches:

variance O

primordial
black holes

§ typically ~100




PBH — Seme Nombers

% If primordial black holes constituted all of the dark matter:

% Assume that all PBH have mass:  10¥g
% Size: 10~% cm
% Number in our Galaxy: 10%°

% Distance: 10 AU
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PBH Coustaints al Fermation
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PBH Coustaints al Fermation

x pBH
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%my Mass Mw@%

% OGLE detected a particular population of microlensing events:

% 0.1 - 0.3 days light-curve timescale - origin unknown!
Could be free-floating planets... or PBHSs!
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Mass [M@]
[Wyrzykowski & Mandel 2020]

% OGLE has detected
58 long-duration
microlensing events
in the Galactic bulge.

% 18 of these cannot be
main-sequence stars
and are very likely

b

ack holes.

* T

neir mass function

overlaps the low mass
gap from 2to 5 M.

% These are not expected
to form as the endpoint
of stellar evolution.
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[Boldrini et al. 2020]

% Non-detection of
dwarf galaxies smaller
than ~ 10 — 20 pc

% Ultra-faint dwarf
galaxies are
dynamically unstable
below some critical

radius in the presence
of PBH CDM!

% This works with a few
percent of PBH DM of
25 -100 M,



Correlutions / Cosmic %m// X R B%/M

[Capelluti et al. 2013]

% PBHs generate early structure and respective backgrounds
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W Black hole progenitors in the pair-instability
l.e. above ~ 60 M)

mass gap
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GRAVITATIONAL WAVE MERGER D
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W Black hole progenitors in the lower mass gap
(i.e. between 2 and 5 M)

> SINCE 2015
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GRAVITATIONAL WAVE MERGER DETECTIONS
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% Asymmetric black hole progenitors (mass ratio q < 0.25) ﬁ"?



GRAVITATIONAL WAVE MERGER DETECTIONS

> SINCE 2015

THE ASTROPHYSICAL JOURNAL LETTERS, 8§96:144 (20pp), 2020 June 20 https: //doi.org/10.3847/2041-8213 /ab960f
© 2020. The American Astronomical Society.
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GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass
Black Hole with a 2.6 Solar Mass Compact Object

R. Abbottl, [..]

Abstract

We report the observation of a compact binary coalescence
involving a 22.2-24.3 M) black hole and a compact object with a
mass of 2.50-2.67 M@ |[..] the combination of mass ratio,
component masses, and the inferred merger rate for this event
challenges all current models of the formation and mass distribution
of compact-object binaries.

W Asymmetric black hole progenitors (mass ratio g <0.25) '&97)?

KAGRA
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% Recent reanalysis of LIGO data by Phukon et al. '21 with
updated merger rates and low mass ratios:

FAR [yr™'] In( UTC time mass 1 [Mg] mass 2 [M@]‘

0.9281
0.2759
P 0.6997 §

0.1674 8.457 2017-03-15 15:51:30 3.062
0.2193 8.2 2017-07-10 17:52:43 2.106
0.4134 7.585 2017-04-01 01:43:34 4.897
1.2148 6.589 2017-03-08 07:07:18 2.257

w Four subsolar candidates with SNR > 8 and a FAR < 2 yr'1

% Note that an order-one dark matter fraction of subsolar PBHs
IS still possible!



Further Sysport | Evidence for PBH;

% High-redshift quasars (up to 10° M, at z = 13)
% Fast radio bursts

% Missing-pulsar problem

% Excess of lenses in Galactic bulge

% Clumping of dark matter

x ..
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%M/ /Z{Mfﬂy db Z%é Cluiverse

% Changes in the relativistic degrees of freedom:
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%M/ /Z{Mfﬂﬂ db Z%é Cliiverse

% Changes in the equation-of-state parameter w = p/p:
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Thernal” Histors / te Uiiverse

% An essentially featureless power spectrum leads to:
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W Primordial black holes influence physics on many different scales,
and manifest themselves via a plethora of different signatures.

% At present, they are not tightly constraint in general and can easily
constitute 100% of the dark matter, even in several mass ranges.

% There are many hints for their existence from OGLE and other
microlensing surveys, LIGO/Virgo gravitational-wave events etc.

W The thermal history of the Universe naturally provides peaks
In the PBH mass function at several relevant scales.
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/Wmf Lisues

% The standard approach of PBH formation has two main issues:

w In order to have a given percentage of PBH dark matter
requires exponential fine-tuning.

% PBH formation happens in the strong-coupling regime.



% We propose a novel PBH formation mechanism which is
W assumption-minimal,
% free of exponential fine-tuning,

% avoids strong coupling,
w works with standard QCD*,

% compatible with observations.



CW Formation /Mw@ad/m
% 1. Ingredient: de Sitter fluctuations produce quarks during inflation.

Inflation
— dilution

q < > q

% Focus on a simple pair case.

% Distance grows as d « e’e.

W Quarks quickly move out of causal contact.



CW [ ormation /l/[é@%/%
% 2. Ingredient: Confinement at energy scale A, M /A, > 1

String

< >
Horizon size ry; < d

% Flux tubes form connecting quark/anti-quark pairs.

% The system cannot collapse as long as d > ry.

2
— (My/A, )

% String breaking into quarks pair, P, .| e ,

unne

suppressed as long as Mq/AC > 1.

Ny



CW Lormation /V1 @oéwf/m

% 3. Ingredient: Black hole formation upon horizon entry

Horizon size = ct = d

% Acceleration of the quarks a = AZ/m, quickly leads to their
ultra-relativistic motion.

% The energy stored in the string is E ~ AZr~ M,, R,> A"

% PBHs from inflationary overdensities are heavier by a factor ~ AZ.



Lormation S %é

Scale
A
(CA??
| Matter
Physical
distance of
quark pair |
Radiation 4~
Hubble
Scale | Confinement and
/ Inflation collapse upon
] | horizon entry
\ Reheating

Formation of
quark pair



Dark /Wﬂi‘%m CW

w Present-day dark matter distribution vs monochromatic constraints:
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fﬁ/%m Subsolor PBH,

% During inflation, the string undergoes a Brownian motion, induced by
de Sitter quantum fluctuations, leading to deviation from straightness:

q
/ —1
533 ~ Ne Hi 5XI /
- I1.><10—34
I . . % Thisleads to potentially
significant spin:
4.x107%
j OX
[ 25x107M “PBH = R,
_' 12
: -1.6x1077 ~ 1 10g HMPBH
| I H Mpgy A
: 1.

AapBH



Formation of Virtices

[Dvali, Kiihnel, Zantedeschi 2021]



Formation of Virtices

% Black Holes can be understood as saturons (see talk by Dvali)

w We showed that these admit vortex structure (see talk by
Zantedeschi), in the case of near-extremal spin.

% PBHSs from confinement could provide
ideal prerequisites for vortex formation

due to highly spinning light PBHSs. 03
% If these PBHs provide the dark matter, r
their vorticity might explain primordial /o
magnetic fields. [Dvali, Kiihnel, Zantedeschi 2021]

% Besides, vorticity provides a topological meaning to
the stability of extremal black holes.



Maore o Constraints



% These constraints are not just nails in a coffin!
(Carr)

% All constraints have caveats and might change.

% Each constraint is a potential signature.

% PBHs are important even if fogy < 1.



Constaints — Clicertainties

% May constraints rely on rather on uncertain, restrictive, simplistic or
even incorrect assumptions!

—3» We have to understand better:

% Galactic dark-matter profile

% Clustering

% Accretion

% Characteristics of the lensed sources (size, variability, ...)
% Composition of "probes" in general

% Velocity distribution

% Hawking radiation
x ...



Conslraints — Ucertainties on }{W@ Rebation

* Uncertainties induced by: ~ 10°

W instrument 10-2
characteristics
% computation of the 1041
(extra)galactic .
photon fluxes 2 106 4.
S
% statistical treatment
10—8 -
W computation of the
Hawking radiation 10—10 £
10_12 | |
1014 1016 1018 1020

M (g)
[Auffinger 2022]



Constaints — Ulncertaintios on }{w@ Raltation

* Uncertainties induced by: ~ 10° |
W instrument 10-2
characteristics '
% computation of the 10—4 -
(extra)galactic ;
photon fluxes = 106 4.
STy
% statistical treatment
108 -

W computation of the
Hawking radiation 10—10 £

These constraints 10-12 , | |
m.ight even entirely 1014 1016 1018 1020
disappear, due to | M (g)
guantum back-reaction!

(see work by Dvali et al.)

[Auffinger 2022]
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PBH (@ Lurticle Dark Matfer

% Always when fpgg < 1 there must be another DM component!
% Study a combined scenario: DM = PBHs + Particles
% The latter will be accreted by the former; formation of halos.

% Study WIMP annihilations in PBH halos:

% The annihilation rate T « n?.

% Halo profile does matter; enhancement of I'in density spikes.
1) Derive the density profile of the captured WIMPs;
2) calculate the annihilation rate;

3) and compare to data.
[Eroshenko 2016,
Boucenna et al. 2017,
Adamek et al. 2019,
Carr, Kihnel, Visinelli 2020 & 2021]
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[Carr, Kihnel, Visinelli 2021]

% Annihilations lead to plateaux in the present-day halos.
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/Wmf Lisues

% The standard approach of PBH formation has two main issues:

w In order to have a given percentage of PBH dark matter
requires exponential fine-tuning.

% PBH formation happens in the strong-coupling regime.



% We propose a novel PBH formation mechanism which is
W assumption-minimal,
% free of exponential fine-tuning,

% avoids strong coupling,
w works with standard QCD*,

% compatible with observations.



CW Formation /Mw@ad/m
% 1. Ingredient: de Sitter fluctuations produce quarks during inflation.

Inflation
— dilution

q < > q

% Focus on a simple pair case.

% Distance grows as d « e’e.

W Quarks quickly move out of causal contact.



CW [ ormation /l/[é@%/%
% 2. Ingredient: Confinement at energy scale A, M /A, > 1

String

< >
Horizon size ry; < d

% Flux tubes form connecting quark/anti-quark pairs.

% The system cannot collapse as long as d > ry.

2
— (My/A, )

% String breaking into quarks pair, P, .| e ,

unne

suppressed as long as Mq/AC > 1.
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CW Lormation /V1 @oéwf/m

% 3. Ingredient: Black hole formation upon horizon entry

Horizon size = ct = d

% Acceleration of the quarks a = AZ/m, quickly leads to their
ultra-relativistic motion.

% The energy stored in the string is E ~ AZr~ M,, R,> A"

% PBHs from inflationary overdensities are heavier by a factor ~ AZ.
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w Present-day dark matter distribution vs monochromatic constraints:
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[Carr et al. 2017]
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fﬁ/%m Subsolor PBH,

% During inflation, the string undergoes a Brownian motion, induced by
de Sitter quantum fluctuations, leading to deviation from straightness:
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E%A@ within Standard QCD*

% Remember, our required assumption, for the string not to break:

N, <M,

% However, standard QCD values indicate the opposite: A, > Mq.

% It looks like, our mechanism cannot work with QCD...



E%A@ within Standard QCD*

% It is natural for the confinement scale and mass to change
In the early Universe!

_ | "
g yl//Ll//R¢ ngF ﬂUF

% Couplings are expectation values of fields and can be very
different in the early Universe.

w Requirement: Low-temperature expectation value should
set the right coupling values.

ThIS should happen before BBN
Ieavmg large room for PBH productlon
V|a the Conflnement mechanlsm :



Gravitational Wives

% After horizon entry, the quarks quickly move towards each other,
emitting gravitational waves.

% This is similar to dual to systems of dual monopole/anti-monopole

pairs connected by a string. o |
[cf. Martin & Vilenkin 1997; Leblond, Shlaer, Siemens 2009]

w NANOGrav data from pulsar-timing observations indicate the
presence of a stochastic gravitational-wave background.

8.6 —8.4 —g8.0 —80  —78




NANO Qrmy

% There might be a lack of Hellings-Downs correlation. - still unclear

5.0
25
N
3

= 0.0
<

*  Monopole

0 45 90 135 180

[Arzoumanian et al. 2021]

W We can easily generate a monopolar signal upon adding e.g.
~ ¢ gq with coupling strength relatively weaker by ~ 107>,



Ljﬂé PBIH Dark Matser?

% The exclusion of light (Mpgy < 10%° g) PBHSs is based on the validity of
semiclassical Hawking radiation throughout most of the evaporation.

% This is unjustified (and likely to be entirely false), as suggested by

recent studies of black holes on the full guantum level.
[Dvali et al. 2020]

—-60F

65} the holes' enormous memory

capacity, their lifetime 7 might

1.x10°6
F % Results suggest that due to
-1.x10%

< T 1x10° be significantly prolonged.
<L) : :'s~ = " 7
2 75 I N % A conservative estimate is:
{ TSN | T— T>1S8?
-8.0} % N SR A 1 %10-2 Entropy of the
: R ‘ black hole
—85_.‘,, S Y ; :
-16 ~15 14 13 12 1x10+ W This opens up a large window

log (T/M,) fonn/ A for light PBH dark matter.
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[Carr et al. 2021]
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Critical’ Cﬁﬁ%f@
% Usually: Assume

Mpg < Mg

\

horizon mass

% Critical scaling:
[Choptuik "93]

Mpy =kMpy (6 —9.)

P

density contrast

% Radiation domination and for

spherical Mexician-hat profile:

k~33, 0.~045, ~v=0.36

o dfﬁ _-
'
1 ﬁﬁp |
&
&
-2 f&f m
o
L -
] ] | ] ] | ] | ] | ] |
—12 —10 —8 —6 —4 —2 0
log(6—-6,)

[Musco, Miller, Polnarev 2008]
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% How would this look for monochromatic mass function?
1 i ]
0.500

dark-matter fraction

0.100 :
0.050
| Horizon-mass approximation

0.010 ?
0.005

0.001 — w * —
10 20 50 100

M/M [Carr, FK, Sandstad 2016]
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% How would this look for monochromatic mass function?

0.500

0.100 |
0.050

0.010 |
0.005

0.001

1

dark-matter fraction

Horizon mass approximation .

10

20

M/Mca

100

[Carr, FK, Sandstad 2016]



Critical’ cﬁ@%

% How would this look for monochromatic mass function?

1
0.500

— dark-matter fraction

It is impossible to obtain

monochromatic mass spectra!

0.010 ¢ "
A \ \
0.005 | critical collapse \\
’ \
\
\
0001 ‘ | ‘ LS | , w ‘ ‘ |
10 20 50 100

MIM 5 [Carr, FK, Sandstad 2016]
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0.06

0.04

df /dM

0.02

1 1 1 1 I 1 1 I 1 1 1 1 I 1 1 1 1
- d log M — log M¢)? -
—f = N exp ( g 5 601 )
B dM ..': 2 O f B
I axion-curvaton ]
i running-mass i
-1 3

[Green 2016]
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lognormal
' ' ' ' |

l0g40(M:/Mg) [Carr et al. 2017]
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% Lepton flavour asymmetries are defined as

Uo = " , o € e, u, 7}

Nas Na, Nu, N, Number densities of (anti)leptons and
corresponding (anti)neutrinos

S entropy densities

w CMB constraints are quite weak:

[l + 0, + 0] <1.2x 1072

(unlike baryon asymmetry: b = 8.7 x 10~ 1)
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log,y Mp /Mo [BKOS 2021]
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QE

—8x 1072 and £, =4, =4 % 102

[BKOS 2021]
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