
Jisuke Kubo（MPIK, Heidelberg, Uni. of  Toyama ）

Scale Invariance

as a Solution for  


  Mass without Mass

1
PASCOS 2022, Heidelberg




Physics Today, 52 (Nov. 1999); 53 (Jan. 2000)

J. Wheeler,   1962

F. Wilczek

2



Scale Invariance

If we start with a theory containing a mass term 

from the beginning, we have no chance to explain 
its origin.

The Lagrangian should not contain

any dimensionful parameter.
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of where E   , M  and Λ come from (their origin)

Electroweak scale E    ,

Planck scale M    ,

Cosmological constant    ,

etc


EW 
Pl

Λ

Fundamental energy scales

Shift the question of why 

and            are so small (hierarchy problem)Λ
EW PlE    / M     

 / M     Pl

EW Pl
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However, scale anomaly 

can not directly generate mass gap.


To generate a mass gap, scale invariance 

has to be spontaneously broken.

Callan, ’70; Symanzik,’70

Scale invariance is hardly broken 

by scale anomaly.

5



 Coleman+Weinberg, ’73 


with          :         if         = 0      


Models Mechanism α β/H Tn [TeV] f [Hz] GW source mDM [TeV]

1 Coleman-Weinberg 0.11 0.67× 103 0.052(∼ TC) 0.0084 sound waves – –
2 Gildner-Weinberg 1.6× 1013 8.0 2.4(# TC) 1.5 Collisions – –
3 〈ψ̄ψ〉 &= 0 0.024 3.7× 103 0.35(∼ TC) 0.36 Sound waves 0.23
4 〈S†S〉 &= 0 0.013 2.6× 104 0.36(∼ TC) 2.7 Sound waves 1.0

µ2
H = 0 MPl mH ∼ 5 mtop

1. 2HD (not scale invariant)
M. Kakizaki, S. Kanemura and T. Matsui, PRD,‘15;
C. Caprini et al, JCAP, ‘16

2. ν-option
V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, PRD, ‘19;
V.Brdar, A. J. Helmboldt and JK, JCAP, ‘19

3. Strongly interacting hidden sector (fermionic)
JK, K-SLim and M.Lindner, JHEP, ‘14;
M. Aoki and JK, arXiv:1910.05025

4. Strongly interacting hidden sector (bosonic)
JK and M. Yamada, JCAP, ‘16

SE =
∫ 1/T

0
dτ

∫

d3x LE '
1

T

∫

d3x LE =
S3

T

ψ̄i(1− γ5)ψj = −
1

4G

8
∑

a=0
λaji(σa + iπa)

〈ψ̄iψj〉 = −
1

4G
δij〈σ0〉

even for ΛH ) Λ = 0.93 GeV

Nambu-Jona-Lasinio (NJL) model, TC = 72 MeV, β/H ' 1.8× 104

Linear sigma model (LSM), TC = 102 MeV, β/H ' 4.4× 104

Polyakov-loop enhanced Nambu-Jona-Lasinio (PNJL) model
TC = 122 MeV, β/H ' 9.4× 104
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Higgs potential

Unfortunately:
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Dynamical generation of EEW 

Scale anomaly
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*Fujii ’74
*Minkowski, ’77
*Englert, Gunzig,Truffin+Windey,’75
*Minkowski, ’77
*Chundnovsky,’78
*Fradkin+Vilkovisky,’78
*Zee,’79
*Smolin,’79
*Terazawa,’81
*Nieh‚ ’82
…………..

*Akama, Chikashige+ Matsuki,’78
*Adler,’80
*Zee,’81
…………..

Induced gravity

with scalars

without scalars
7

Dynamical generation of M Pl 



Top mass (GeV)
Holthausen+Lee+Lindner, ’12. See also 
Berzukov et al, ’12;  Degrassi et al ’12, Buttazzo et al, ’12
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Figure 2. Higgs and top (pole) mass determinations for di↵erent boundary conditions at the Planck scale. The
coloured bands correspond to the conditions discussed in the text and which are also labelled in the insert. The
middle of each band is the best value, while the width of the band is a “RGE error band” inferred from assuming
that all omitted higher orders in the beta functions beyond two loops are limited by the di↵erence between the one
and two loop results. Note that the Veltman condition is truncated at the point where its Higgs mass prediction
violates the vacuum stability bound (both at two-loops). The gray-hatched line at the bottom is the lower direct
Higgs mass bound from LEP. Similarly the purple (brown) lines indicate the LHC Higgs searches at 95% (90%) CL
from the 2010 data. The black dashed lines show the electroweak precision fit from GFitter [21, 22] for 68%, 95%
and 99% confidence intervals (which include limits from radiative corrections and also the direct searches).

curves shink accordingly. In our plot, the aforemen-
tioned “RGE error band” is represented by the band-
width of each curve, with its center representing the
Higgs mass obtained from two-loop RGE running.
The upper edges of the bandwidths consist of the
Higgs masses obtained from one-loop RGEs.

We consider also the uncertainty on the curves
due to the error of strong coupling constant ↵s =
0.1184(7) [29] and we obtain ±1GeV uncertainty to
the Higgs mass, which is negligible when quadrati-
cally added to the bandwidth in Fig.(2). Due to the
relatively large “RGE error band”, the error prop-
agation from the strong coupling constant can be
safely ignored. The theoretical error on the Higgs
mass due to the matching uncertainty [18, 30] be-
tween top Yukawa MS coupling and top pole mass
is also considered. Comparing our vacuum stability

band obtained with Casas et al. [12, 13], a discrep-
ancy of around ±7GeV for the Higgs mass value ob-
tained via two-loop RGE is observed. This mismatch
can be explained by the omission of two-loop QCD
matching condition by the authors of Refs. [12, 13],
as they only considered one-loop QCD, electroweak
and QED contribution in the top mass matching
condition. Since we would like to consider only the
uncertainties due to the number of loops of the beta
function used but not the errors caused by omis-
sion of better matching precision, we include the
QCD matching between top Yukawa MS coupling
and top pole mass up to three-loop. The resulting
Higgs mass determined by the vacuum stability with
two-loop RGE agrees with Ellis et al. [31]. The ↵↵s

correction [32] is neglected in our analysis as it only
gives a small contribution. The Higgs pole mass is

5

Indications for Scale Invariance:
At low energy
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M. Lindner: Implications of Triviality for the Standard Model 299 

where D = / I B  2 - 4  CI and the values of parameters  
as given in (7) have been used. 

Our  approximat ion  will shift the pole at most  
1% for N = 3. We have been very careful about  the 
range of validity of our  solutions. As a check we 
might search for the value x* 0 related to m* where 
g2 looses its asymptot ic  freedom. 

C l D  
X~o = = 10.0 (N = 3). 

[ ( B + D )  (2 C + B  - D ) ]  
c t In L(B - D) ~ ~ D ) J  

This gives m* = m  z - ] / 2 .  sin 2 0 w . x* 0 = 197 GeV 
(N = 3). The result is in perfect agreement  with those 
obtained by numerical  integration. For  N > 4  (30b) 
has to be used for such a claculation. 

The remaining equat ion (13) is written in terms 
of 2, x, X2, X 4 

d2 [22 x2 1 3 
t -=cA L (4  ql-~ X 2 - x 4 )  

We integrate this numerically by a Runge-Kut ta  
algori thm for different values of ).(0) and x4(O ). We 
search for the parameter  space where the singularity 
produces no singular behaviour  at Ap scales lower 
than A. 

500- 

m H (GeV) 

4 0 0  

300 

200 - 10150eV GUT Sccde 

100 - 

t f I I I 
0 0 100 200 300 

m t (GeV) 
Fig. 2. The allowed parameter space of m H and m t for various 
embedding scales A. Allowed is the area around the origin 
bounded by the various curves. The curve entitled with Landau 
pole is identical to the curve of Beg et al. The horizontal lines 
come from avoiding triviality and the vertical lines are deter- 
mined from 2(t) becoming negative at scales lower than A 

IV. Discussions and Conclusions 

The resulting bounds  for m u and m t as function of A 
are drawn in Fig. 2. For  2(0) becoming large the 
result is less reliable. The last curve for A = I T e V  
should be qualitatively good. This curve has to be 
compared  with the estimate of Dashen and Neuber-  
ger [12] of  m/~<0 (1 TeV). The curves which limit the 
allowed area to the right come from demanding 2(0 
not  to become negative up to A. If we expect new 
phisics to appear  in the TeV range triviality gives 
the same bound  on the Higgs mass as A. But then 
the Higgs particle should not  be much heavier than 
1 TeV. 

In Fig. 2 the result for A=1015  GeV-~GUTsca l e  
is identical to the curves obtained by Cabbibo  et al. 
[13]. In their paper  they study the s tandard  model  
in the f ramework of grand unifying theories with the 
requirement that  no interaction becomes strong up 
to the unification scale. Avoiding triviality means 
avoiding Landau  singularities which are nearby the 
scale where couplings begin to become stronger. 
Thus triviality motivates the requirement in [-13]. 

In  Fig. 3 we draw the upper  bounds  on m/~ as a 
function of  A (curve 1). The bound  f rom the scale A 
is also shown (curve 2). The two bounds  cross at a 
scale of  O(1 TeV) and give the maximal  allowed 
value of  mu~- l / 2TeV.  Finding a Higgs particle 
would allow us to ask where new physics has to 
appear. If  m H > 1 7 5 G e V  then A<Aeianok. For  a 
Higgs exceeding 200 GeV it becomes difficult to re- 
alize a G U T  model. If the Higgs mass is still higher, 
A is quickly driven to the TeV range. The result for 
N = 4  is obtained to a very good  approximat ion  by 
simply replacing m t by ~ .  

U p  to now we studied consequences of triviality 
of pure scalar 2q~ 4 theories. Triviality might  be 
something which is c o m m o n  to non asymptot ical ly  
free field theories. N o t  much is known about  this 
possibility as proofs are already very complicated in 
2 ~  4. But if this is true other  couplings (e.g. Yukawa  
couplings) in the s tandard model  should not  pro- 
duce too strong values. This is because otherwise the 
same argumenta t ion  as in the scalar case goes 
through. Other  fields can be neglected and the re- 
maining sector produces a pathological  short  dis- 
tance behaviour.  Hopeful ly we can still use the one- 

Lindner,’86

JK, Sibold, Zimmermann, ’85;’88

m
H

m t

Desert => Scale invariance is broken only by 
anomaly if μ    = 0.Η

2

γ−1 , β/γ << 1 → perturbative

∆m2
H

βH,S , γ , κ

∞× 0 =

γR2 + κW 2

λH,S(µ) for µ >∼ MPl

W = Weyl tensor

Origin of massive spin-two ghost

(4π)2 µ
dλH,S

dµ
=
β2
H,S

2

( 5

4
κ−2 +

1

36
γ−2
(
1 + 6βH,S

)2 )
+ · · ·






κ−1 → 0

γ−1 → ∞

βH,S → −1/6

as µ → ∞

βS S
2 R → βS 〈S〉2 R → M2

Pl

2
R

{λH , yt , g3} - system is asymptotically free.

The max. value of y2t /λH → m2
t/m

2
H ( 1.9

([
m2

t/m
2
H

]
exp

( 2.0
)






Non-perturbative scenario: Fixed Point (asymptotic safety)

(Semi) Perturbative senario

Strings

∈

Bardeen,’95

1

λHS

︸ ︷︷ ︸

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ⇒ safeness of λH ⇒ multiplicative solution

3. The desert ⇒ the SM and Planck scale physics are directly related

Safeness of λH ⇔ Inflationary parameters

Phenomenogical aspect:

1. For CW breaking: Supercooling ⇒ new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT⇒ suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2 model of Starobinsky

⇒ r >∼ rR2 ∼ O(10−3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc

ξ

ξH <∼ 2.5 · 10−(15∼16)

10−(18∼19) ξH <∼ 2.5 · 10−33

M2
Pl = ξS〈S〉2 → λHS〈S〉2H†H → λHS〈S〉2 <∼ O(m2

H)

λHS/ξS <∼ M2
Pl/m

2
H ∼ 2.5 · 10−33 !!



Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

R^2 inflation 

Planck2018

ns

r

10

Indications for Scale Invariance:

At high energy



Models Mechanism α β/H Tn [TeV] f [Hz] GW source mDM [TeV]

1 Coleman-Weinberg 0.11 0.67× 103 0.052(∼ TC) 0.0084 sound waves – –
2 Gildner-Weinberg 1.6× 1013 8.0 2.4(# TC) 1.5 Collisions – –
3 〈ψ̄ψ〉 &= 0 0.024 3.7× 103 0.35(∼ TC) 0.36 Sound waves 0.23
4 〈S†S〉 &= 0 0.013 2.6× 104 0.36(∼ TC) 2.7 Sound waves 1.0

L
√
−g

= −
M2

Pl

2
R +

{

γR2 (γ ∼ 109)
β|H|2R− λH |H|4 (β ∼ 104)

for

{

R2 inflation, Starobinsky, ‘80
Higgs inflation, Bezrukov and Shaposhnikov, ‘08.

(1)

Leff = Tr ψ̄(i/∂ − yS)ψ + 2GTrΦ†Φ+GD (detΦ+ h.c.)

Φij = ψ̄i(1− γ5)ψj

Veff(f)/〈f〉2

〈ψ̄i(1− γ5)ψj〉BSC = −
1

4G
[ δij σ̂ + λa(σ′a + iπa) ]

〈σ′a〉 = 0 , 〈πa〉 = 0

Veff(σ) [ GeV4 ]

σδij = −4G〈ψ̄iψj〉BCS , φa = −2iG〈ψ̄γ5λaψ〉BCS

L0 = Tr ψ̄(i/∂ −M)ψ − iTr ψ̄γ5φψ −
1

8G

(

3σ2 + 2
8
∑

a=1

φaφa

)

+
GD

8G2

(

−Tr ψ̄φ2ψ +
8
∑

a=1

φaφaTr ψ̄ψ + iσTr ψ̄γ5φψ +
σ3

2G
+

σ

2G

8
∑

a=1

(φa)
2

)

(2)

with φ =
∑8

a=1 φaλa and σ = σ1 = σ2 = σ3.

10−3 10−4 10−5

µ2
H = 0 MPl mH ∼ 10 GeV mtop

1. 2HD (not scale invariant)
M. Kakizaki, S. Kanemura and T. Matsui, PRD,‘15;
C. Caprini et al, JCAP, ‘16

2. ν-option
V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, PRD, ‘19;
V.Brdar, A. J. Helmboldt and JK, JCAP, ‘19

1

scale invariant

super flat potential 

(in Einstein frame)
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1

r ∝
( V ′(φ)

V (φ)

)2

TC " 2× 108 GeV , Tn " 4× 104 GeV , β/H " 10

β

H
= T

d

dT

(S3

T

)
|T=Tn

∼ S3

T
∼ O(100)






∼ O(10) for Coleman-Weinberg

∼ O(103∼4) for 〈ψ̄ψ〉 '= 0 or 〈S†S〉 '= 0

Γ(T ) = T 4
( S3

2πT

)3/2
exp(−S3/T )

" Γ(Tn)e
−β∆t for T ∼ Tn

(S3 = 3− d Euclidean action)

Tn < TC

(n=nucleation)

Γ " H4

y S ψ̄ψ

ν = 1.76 ν = 1.82 ν = 1.86

S3

T
∝
(
1− T/TC)

ν






Nambu-Jona-Lasinio (NJL)

Polyakov-NJL (PNJL)

Linear Sigma Model (LSM)

β

H
= T

d

dT

( S3

T

)
|T=Tn ∼ S3

T
∼ O(100) → f ∼ 10−8 Hz

MPl =
√
2βS 〈S〉

γ−1 , β/γ << 1 → perturbative

1

V (φ)

r ∝
( V ′(φ)

V (φ)

)2

TC " 2× 108 GeV , Tn " 4× 104 GeV , β/H " 10
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I. INTRODUCTION

Despite being a great success, the Standard Model (SM) has several shortcomings. It predicts all

three species of neutrinos to be massless, in contrast to the observation from neutrino oscillation

experiments. It also does not contain a particle that can be a viable dark matter (DM) candidate

as well as a successful mechanism for generation of baryon asymmetry of the Universe. Many of

the proposed theories Beyond the Standard Model (BSM) predict degrees of freedom at very high

scales which could for instance address aforementioned issues. However, such an approach has its

own di�culties: increment of the mass scale at which heavy particles reside leads to the larger

Higgs mass correction through processes at loop level, and this leads to a feature dubbed hierarchy

problem. In this paper we will try to address most of the aforementioned issues simultaneously,

within a framework that is a well-motivated SM extension. The core is connection between genera-

tion of light neutrino masses and electroweak scale via processes involving right handed neutrinos.

The light neutrino masses induced via type-I seesaw [1–4] are

m⌫ '
y2⌫v

2

h

mN

, (1)

where y⌫ represents lepton portal Yukawa coupling, vh = 246 GeV and mN stands for right-handed

neutrino mass. If the right-handed neutrinos are heavy, they can significantly contribute to the

correction to the Higgs mass term, LSM ✓ �µ2

H
H†H, in higher orders in perturbation theory,

where H is the SM Higgs doublet. At one-loop the correction (finite term) is given by [5–8]

|�µ2

H | ⇠
y2⌫m

2

N

4⇡2
, (2)

where ⇠ stands to indicate that the correction depends on the renormalization scale at which it is

evaluated. The idea of the “neutrino option” [9] is based on the assumption that (2) is the main

source for the Higgs mass term, i.e. µ2

H
' �µ2

H
. Simultaneous solution of (1) and µ2

H
' �µ2

H

reveals mN between 10 and 100 PeV, with y⌫ . 10�4 [9] (see also Refs. [10, 11]). The neutrino

option thus establishes a link between the heavy right-handed neutrinos and the electroweak scale.

We are naturally led to the desire to embed the neutrino option into a classically scale invariant

theory [12], because the Higgs mass term, which is the only scale symmetry violating term in

the SM Lagrangian, is assumed to be absent or extremely suppressed for the neutrino option to

be sensible: We would like to understand the origin of the electroweak scale as a consequence

of spontaneous (dynamical) scale symmetry breaking [13–15]. To be complete, we also have to

understand the origin of the right-handed neutrino mass mN in this manner. A simplest way is to

realize mN ⇠ hSi [15], where S stands for a SM singlet real scalar field. That is, the Majorana

mass term for the right-handed neutrino NR is replaced by the Yukawa interaction between S and

NR [15]. Along this line, a conformal UV completion of the neutrino option has been performed

in Ref. [16]: The mass squared correction �µ2

H
transmutes indeed into radiative correction to the

dimensionless coupling �HS before the spontaneous scale symmetry breaking [16], where �HS is

   (100  GeV)

if m    10   GeV and 

type I seesaw is used.

2

7

Vissani,’97; Casa et al,’99;

Clarke et al,’15; Bambhaniya et al,’16
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Use it to trigger EW symmetry breaking
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Related topics: GW, Leptogenesis, etc
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quadratic corr.  =>  logarithmic corr.

1

λHSS
2 H†H

〈ψ̄ψ〉 #= 0 〈S†S〉 #= 0 by strong interactions

〈φ〉 #= 0 by CW

V (φ)

r ∝
( V ′(φ)

V (φ)

)2

TC % 2× 108 GeV , Tn % 4× 104 GeV , β/H % 10

β

H
= T

d

dT

(S3

T

)
|T=Tn

∼ S3

T
∼ O(100)

S3

T
∼ 140






∼ O(10) for Coleman-Weinberg

∼ O(103∼4) for 〈ψ̄ψ〉 #= 0 or 〈S†S〉 #= 0

Γ(T ) = T 4
( S3

2πT

)3/2
exp(−S3/T )

% Γ(Tn)e
−β∆t for T ∼ Tn

(S3 = 3− d Euclidean action)

Tn < TC

(n=nucleation)

Γ % H4

y S ψ̄ψ

ν = 1.76 ν = 1.82 ν = 1.86

S3

T
∝
(
1− T/TC)

−ν

to

Higgs naturalness  =>  Naturalness of

 (talk by Rezacek)

1

�HS

| {z }

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ) safeness of �H ) multiplicative solution

3. The desert ) the SM and Planck scale physics are directly related

Safeness of �H , Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?

⇠

�HS

⇠H <⇠ 10�14 and  >⇠ 108

1.6 · 10�(18⇠19) ⇠H <⇠ 3.7 · 10�33 and  >⇠ 108

M2
Pl = ⇠ShSi2 ! �HShSi2H†H ! �HShSi2 <⇠ O(m2

H
)

2

M2
Pl = ⇠ShSi2 ! �HShSi2H†H ! �HShSi2 <⇠ O(m2

H
)

�HS/⇠S <⇠ M2
Pl/m

2
H
⇠ 2.5 · 10�33 !!

µ
d�HS

dµ
= � ⇠S

(4⇡)2

⇣ 5⇠H
4

�2 +
⇠H
36

��2
�
1 + 6⇠H

�
(1 + 6⇠S

� ⌘
+O(�HS)

��HS
<⇠ 2.5 · 10�33 ⇠S
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y2
⌫
y2
N

4⇡2
⇠ O(10�12) !!

�HSS
2 H†H

h ̄ i 6= 0

hS†Si 6= 0

h ̄ i 6= 0 hS†Si 6= 0 by strong interactions

h�i 6= 0 by CW

V (�)

r /
⇣ V 0(�)

V (�)
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⇣S3

T

⌘
|T=Tn

� ⇠ S3

T
⇠ O(100)

S3

T
⇠ 140

8
>>>>><

>>>>>:

⇠ O(10) for Coleman-Weinberg

⇠ O(103⇠4) for h ̄ i 6= 0 or hS†Si 6= 0
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of spontaneous  scale symmetry breaking

at finite temperature

Characteristics

1st Order Phase Transition (PT)

TC

TC

TC

TC

T >

T =

T <

at the laboratory (H=0)
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In the expanding Universe   
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(talk by Gonzalez)
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Hogan,’83; Witten,’84

1

�HS

| {z }

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ) safeness of �H ) multiplicative solution

3. The desert ) the SM and Planck scale physics are directly related

Safeness of �H , Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?

⇠

�

H
⇠ S3/Tn ⇠ O(100)

�HS

(⇠H <⇠ 10�14 and  >⇠ 108) OR (⇠H ' �1/6 and  >⇠ 1019)
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  Coleman-Weinberg scenario

β/H is small => long lasting PT => T  << Tn C

Supercooled PT 

If  T  <  T    ,   T   >  or  <  T     ,

a new cosmological history has to be drawn:


* DM production * Baryogenesis

* EW PT * Reheating etc

Konstandin+Servant,’11; Iso,Shimada+Serpico,’17;Hambye,Strumia+Teresi,’18,

Jinno et al,’19; Brdar,Helmbolt+Lindner,’20; Döring et al,’21…..(talk by Döring)

nEW QCDn
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Gravitational Waves
β/H is small => long lasting PT => T << T
=> <S>/ T  >>1 =>   strong PT => strong GW signal11
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FIG. 4. Stochastic gravitational wave spectra for the benchmark points BP1 and BP2 (see Table I) are
shown together with the limits (LIGO 2016–2017) and future sensitivities (LIGO 2019–2020, LIGO 2022+,
DECIGO, BBO, LISA) of selected observatories. Our model predicts values for fpeak in the O(1Hz) to
O(100Hz) range (see Fig. 3) with an associated peak energy density of order 10

�8. Hence, the majority of
the parameter points can already be tested in the upcoming LIGO observing run. The displayed power-law
integrated sensitivity curves were constructed according to Ref. [53] assuming SNRthr = 10 for space-based
experiments, and SNRthr = 2 for LIGO, respectively. Further information can be found in the main text
below Eq. (25).

detectors will be able to also probe smaller frequencies. The stochastic gravitational wave signal for
the parameter point BP1 marginally intersects the O2 sensitivity contour and the corresponding
SNR is 2.7. Importantly, BP1 nicely demonstrates that parameter points in our model can have
fpeak at frequencies where LIGO is most sensitive. Furthermore, it can be easily obtained from
Eq. (23) that for a typical value �/H⇤ ⇠ 10, ⌦GW(fpeak)h2 is around 10

�8. This can also be seen
in Fig. 4 for both benchmark points. Therefore, by looking at the sensitivity curves from Fig. 4,
one may infer that all parameter points with fpeak in the 10Hz to 100Hz region will be tested in
LIGO’s O3 and “Design” phases. In contrast, due to a peak frequency of only roughly 1Hz, BP2 is
much less likely to be successfully probed by LIGO. However, both considered stages of the future
space-based observatory DECIGO, as well as the BBO experiment would still be sensitive.

The shape of the gravitational wave spectrum can be easily understood from Eq. (23). Namely,
for f ⌧ fpeak, ⌦GW(f)h

2 is proportional to f
2.8, whereas in the high-frequency region, f � fpeak,

the gravitational wave signal drops less steeply ⌦GW(f)h
2
/ f

�1. This can also be inferred from
Fig. 4 for both of our benchmark points. Let us note that even though causality implies that the
signal should increase with the third power in the low-frequency limit [61], f2.8 yields a better fit
to the simulated data and is therefore commonly employed in the literature [26].

Determining the precise value of SNR for which a stochastic gravitational wave background can
be reliably detected in a given experiment (hereafter denoted as SNRthr) is beyond the scope of the
present paper as it is related to experimental aspects which we do not study. Following Ref. [26] as

Scale invariant ext. 

of Neutrino Option
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Marzola,Racioppi+Vaskonen,’17;

Prokopec,Rezacek+Swiezewska,’19;

Marzo,Marzola+Vaskonen,’19;

Mohamednejad,’19;Ellis,Lewicki+No,’19;

Ellis,Lewicki+Vaskonen,’20,…..


for B1

SNR(5y)=5
SNR=2
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Non-perturbative  scenario

No 1st principle calculation of S  / T
on going project ,USQCD, ‚19
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Analysis based on EFTs
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Holographic QCD, talk by Schwaller
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834 so in the following, starting with the benchmark points
835 introduced in Table I, for which the transition is expected to
836 occur around the QCD scale. Building on these results we
837 will, in a second step, also determine the gravitational-wave
838 signal originating from hidden chiral phase transitions at
839 (much) higher temperatures. For the reasons outlined at the
840 end of the last section, the gravitational wave spectra
841 obtained from Eq. (40) will throughout be compared to
842 those that are based on Eqs. (44) and (47).

843 A. Hidden chiral phase transitions at Oð100 MeVÞ
844 Employing the finite-temperature effective potentials
845 of Eqs. (12), (20), and (26), we can directly compute
846 the bounce solution σ̄bðrÞ for a given temperature T.
847 Equations (30) and (32) then allow us to determine
848 S3=T as a function of the dimensionless ratio T=Tc, where
849 the critical temperatures Tc for each benchmark point and
850 model are listed in the first column of Table II. The result of
851 such a calculation is shown in Fig. 2 for one of our
852 benchmark points. Interestingly, we observe that S3=T
853 quite precisely follows a function of the simple form

S3ðTÞ
T

≃ b
!
1 −

T
Tc

"−γ
for T ≲ Tc; ð48Þ

854855 which was already anticipated by Hogan in Ref. [5]. Fitting
856 our data points to the function in Eq. (48), the parameters γ
857 and b can be determined; see the last two columns of
858 Table II. Intriguingly, the exponent γ is very similar among
859 all benchmark points and effective models. In contrast, the
860 coefficient b is found to vary by several orders of
861 magnitude. Using the best-fit values for γ and b, we plot
862 the function of Eq. (48) alongside the data in Fig. 2 (solid
863 lines). For comparison, we also show natural cubic splines
864 interpolating between the data points (dashed lines). All
865 further calculations involving S3=T will, however, make
866 use of the above-described fit, since this is less sensitive to
867 numerical errors.

868Given S3=T as a function of T we can now straightfor-
869wardly compute the nucleation temperature Tn by solving
870Eq. (36). Most importantly, we always find that Tn ≲ Tc,
871implying that there is virtually no supercooling, which
872a posteriori justifies our choice of the Hubble parameter in
873Eq. (34), as well as our assumption that the nucleation
874temperature approximately coincides with the transition
875temperature (cf. footnote 7).
876Next, the phase transition’s inverse duration β normal-
877ized to the expansion rate of the Universe at the time of the
878transition can be determined from Eq. (37). The outcome is
879again compiled in Table II. Although the precise values for
880β=H vary between different models and benchmark points,
881we generally find them to be of order 104 or even larger.
882Note that these results are in stark contrast to the usual
883assumption9 β=H ≈Oð100Þ, which is used in discussions
884of (hidden) chiral phase transitions throughout the liter-
885ature; see, e.g., Refs. [16,66].10 As we will see in more
886detail below, this has far-reaching consequences on the
887observational prospects for the associated gravitational-
888wave signal. Employing the functional form for S3=T in
889Eq. (48), we can even learn why the conventionally used
890approximation for β=H fails. For that purpose, we compute
891the derivative

dS3
dT

####
T¼Tn

¼
!
1þ γ

Tn=Tc

1 − Tn=Tc

"
·
S3
T

####
T¼Tn

: ð49Þ

892893As stated earlier, we always find Tn to be very close to Tc
894so that the second term in the above expression dominates
895and dS3=dT is much larger than S3=T. Thus, the central
896assumption in arriving at β=H ≈ S3=T ≈Oð100Þ via

F2:1 FIG. 2. Action functional S3=T evaluated at the bounce solution as a function of the dimensionless ratio T=Tc for benchmark point A
F2:2 of Table I. For each of the considered effective models, we show the results of our explicit calculations (black circles) alongside the
F2:3 function bð1 − T=TcÞ−γ fitted to the aforementioned data points (solid lines). For comparison, we also plot interpolating cubic splines
F2:4 (dashed lines).

9See also Eq. (1) as well as our discussion in Sec. III after
Eq. (37).

10There were indications that β=H can attain much larger
values than Oð100Þ in, e.g., Refs. [21,22,28].
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Critical-Phenomena-like behavior of S  / T3
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897 Eq. (38) is no longer justified. Alternatively, we can also
898 use Eqs. (37) and (48) to calculate β=H directly, giving

β
H

¼ γ
Tn=Tc

1 − Tn=Tc
·
S3
T

!!!!
T¼Tn

; ð50Þ

899900 which exhibits the same enhancement with respect
901 to S3=T for Tn near Tc. Since we generally expect
902 Eq. (48) to be valid in the vicinity of the critical temper-
903 ature, we suspect a large β=H ≫ S3=T to be a generic
904 feature of models without large supercooling. As the
905 quantity S3=T evaluated at Tn varies only very little for
906 a wide range of nucleation temperatures [cf. Eq. (36)], the
907 exact value of β=H then chiefly depends on the ratio
908 Tn=Tc, as well as on the exponent γ. This behavior is
909 clearly visible in Table II, in particular for our benchmark
910 point D. Here, the (P)NJL model predicts practically
911 degenerate Tn and Tc, which leads to huge values for
912 β=H of order 106.
913 Last, the transition strength α introduced in Sec. III is
914 obtained using Eq. (39b); see Table II for our results. Let us

915note that, whereas Tn and β=H depend only very mildly on
916the effective number of relativistic d.o.f., α is by definition
917rather sensitive to the precise value of g⋆. By Eqs. (40) and
918(42), the same is then true for the energy density Ωh2 of
919the GW background [but not for its peak frequency,
920cf. Eq. (41)]. To be more precise, it is straightforward to
921see that increasing g⋆ effectively decreases Ωh2. For
922definiteness and unless explicitly stated otherwise, we have
923fixed g⋆ ¼ 47.5 in all calculations, which corresponds to
924nf ¼ 3 light hidden fermions and n2c − 1 ¼ 8 hidden
925gluons. For models with different hidden sectors the
926presented results must be appropriately adapted.
927With the quantities Tn, β=H, and α at hand, and
928assuming that the chiral phase transition proceeds via
929nonrunaway bubbles with some terminal wall velocity
930vb, we are now able to compute the predicted gravita-
931tional-wave spectra Ωh2 as described in Sec. IV. Our
932findings for the benchmark points from Table I are
933displayed in Fig. 3. Recall that both the position and
934height of the spectrum’s peak are solely determined by the
935sound-wave contribution to Ωh2.

F3:1 FIG. 3. Gravitational-wave spectra as predicted for the benchmark points of Table I together with the power-law integrated sensitivity
F3:2 curve [112] for the LISA experiment assuming 5 years of data taking and a threshold signal-to-noise ratio of 5. The strain noise power
F3:3 spectral density for LISAwas adopted from Ref. [113]. The displayed signal bands were computed from Eq. (40) for a fixed g⋆ ¼ 47.5
F3:4 by varying the bubble-wall velocity between vb ¼ 0.75 and vb ¼ 1. The dashed curves show the corresponding spectra obtained from
F3:5 Eqs. (44) and (47) for vb ¼ 1 and the same g⋆ as before.
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FIG. 3. Gravitational wave spectra as predicted for the benchmark points of Table I together with the
power-law integrated sensitivity curve [112] for the LISA experiment assuming five years of running and
a threshold signal-to-noise ratio of 5. The strain noise power spectral density for LISA was adopted from
Ref. [113]. The displayed signal bands were computed from Eq. (40) for a fixed g? = 47.5 by varying the
bubble wall velocity between vb = 0.75 and vb = 1. The dashed curves show the corresponding spectra
obtained from Eqs. (44) and (47) for vb = 1 and the same g? as before.

B. Hidden chiral phase transitions at higher temperatures

In the previous section, we exclusively studied benchmark points with an inherent scale of order
100MeV. However, as we have argued in the introduction, there are equally well motivated BSM
scenarios, where a hidden chiral phase transition is anticipated to occur at higher temperatures.
In order to investigate those cases as well, we will now simply consider scaled-up versions of
the benchmark points in Table I, obtained by multiplying all meson masses etc. by a common
dimensionless factor ⇠ > 1, i.e. ,

mi �! ⇠ ·mi , f⇡ �! ⇠ · f⇡ and Tglue �! ⇠ · Tglue . (51)

Since it is fully determined by model parameters, the critical temperature Tc will then scale with
the same factor. For the same reason the action functional as a function of T/Tc will remain
unaltered, i.e. ,

Tc �! ⇠ · Tc and
S3

T
(T/Tc) �!

S3

T
(T/Tc) . (52)

In contrast, the nucleation temperature Tn only approximately scales with ⇠. An exact scaling
is violated by the fact that Eq. (36) contains the Planck mass as an absolute energy scale, which
is kept constant. Accordingly, the ratio Tn/Tc is observed to decrease mildly for growing ⇠, while

with suppression
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3

III. EFFECTIVE ACTION FROM
HOLOGRAPHY

In order to study how the deconfinement phase transi-
tion took place in the early universe, we need to define an
e↵ective action that we can use to compute the transition
rate. The qualitative picture is as follows. For T > Tc,
the free energy gets minimized on the BBH solution. In
the 4D picture, this corresponds to a deconfined phase.
At T < Tc, it becomes energetically favorable to tunnel to
the free gas solution, corresponding to a confined phase.
Bubbles of the confined phase, and the phase transition
would be of first order. The phase transition must com-
plete before the temperature redshifts below Tmin.

A good order parameter for describing the phase tran-
sition is the horizon position �h

4. The e↵ective potential
for �h is obtained using a free energy landscape approach,
similarly to Refs. [11, 12] (see also [13] for an interesting
example applied to the Hawking-Page phase transition).
At a given temperature T , we construct field and metric
configurations that satisfy the Einstein equations, except
for the condition T = Th, which will be satisfied only
for the two values corresponding to the BBH and SBH
branches, and violated otherwise. In the latter case, a
conical singularity is present at the horizon, and its con-
tribution to the free energy is obtained after regularizing
it with a spherical cap (more details are provided in the
Supplemental Material) [14]. We obtain5

Ve↵(�h, T ) = F(�h)� 4⇡M3

p
N

2

c
b(�h)

3

✓
1�

Th

T

◆
. (14)

The result is shown in Fig. 1. We see that the poten-
tial reproduces the expected features from the discussion
above. For T > Tmin the potential has a minimum corre-
sponding to the BBH solution, a maximum correspond-
ing to the unstable SBH, and a critical point at �h ! 1,
where the free gas solution is recovered. Below Tmin, the
latter is the only critical point.

The tunneling proceeds through the nucleation of a
bubble that interpolates between the BBH solution at
infinity and some unstable, singular configuration at the
centre, rapidly decaying to the thermal gas (confined
phase). The bounce solution goes through the unstable
SBH solution. This is the equivalent, in our setup, of the
Hawking-Page transition in 4-dimensional space-time, in
which the SBH solution acts as an instanton connecting
the BBH solution to AdS space-time. [15]

4 In lattice gauge theory or other phenomenological approaches
for understanding the confinement phase transition, the conven-
tional order parameter is the Vacuum expectation value of the
Polyakov Loop which exhibits a discrete jump in the case of a
First Order Phase Transition. [8–10]

5 Here F is computed using Eq. (12) with Th in the integral. Even
though T 6= Th, this relation can be used to compute the action
of a given field configuration. The same result can be obtained
from the UV asymptotics of b(�), f(�).

FIG. 1. Thermal e↵ective potential as a function of the hori-
zon position �h, for di↵erent temperatures T . The dashed
line represents the free energy density of the black hole solu-
tion Eq. (8)

The other ingredient that we need in order to define
an e↵ective action is the kinetic term. In principle, this
can be computed from the dilaton kinetic term and the
Ricci scalar term in the action of Eq. (1), computed on
a configuration as discussed above, and extracting the
term proportional to (~r�h(~x))2, where ~x and rx are
the 3-space coordinates and spatial derivatives. This is
anyway a complicated task, as it requires the knowledge
of the holographic counterterms that renormalize the ac-
tion (1). We postpone this task to a future investigation.
Here, we will assume a kinetic term [16]

c
N

2

c

16⇡2
(~r�h)

2 (15)

and we vary c in the range 0.1 � 10. The impact of c
on the GW spectrum, discussed below, is limited. The
bounce action is the sum of Eqs. (14) and (15), computed
on the bounce solution:

SB =
4⇡

T

Z
dr r2


c
N

2

c

16⇡2
(@r�h(r))

2 + Ve↵(�h(r), T )

�

(16)
where we assumed an O(3) symmetric action, as we are
interested in thermal tunnelling. The bounce can be cal-
culated with the overshooting/undershooting method as
a solution of the eom with �h(r ! 1) = �

BBH

h
and

@r�h(r)|r=0 = 0. We double-checked our results using
the publicly available code FindBounce [17]. The tun-
nelling rate per unit volume and time is then

� = T
4

✓
SB

2⇡

◆3/2

e
�SB . (17)

5

�/H v = 1 0.1 0.01
Tc = 50MeV 9.0⇥104 8.6⇥104 8.2⇥104

100GeV 6.8⇥104 6.4⇥104 6.1⇥104

TABLE I. Values of �/H for di↵erent wall velocities and crit-
ical temperatures.

the forces which acts on the bubble walls, namely the
pressure di↵erence between the di↵erent vacua and the
friction [29–31]. A detailed understanding of these forces
for the wall velocity is crucial for understanding the grav-
itational wave spectra emitted during a first-order phase
transition. The characteristics of the bubbles and the
amount of kinetic energy (↵) [20, 32] the bubbles obtain
are given by understanding the magnitude of the bubble
wall velocity compared to the sound speed of the plasma
[33, 34]8. Confident estimations of vw in particle physics
models which exhibit First Order Phase Transitions have
only been somewhat successful in models of first-order
Electroweak Phase Transition [36–42] and remain an ac-
tive field of research. Recently, holographic techniques
have been employed to estimate the wall velocity in a
strongly coupled phase transition [43–45]. Extrapolat-
ing the result of Refs. [43, 44] to our parameter range,
we obtain vw ⇠ O(0.01). On the other hand, Ref. [45]
obtains a terminal bubble wall velocity of vw ⇠ 0.3 in
a 3+1 dimensional simulation of the bubble growth in a
regime of at least moderately strong supercooling. Fi-
nally, if one relies on estimations of the bubble wall ve-
locity of hydrodynamical systems one conventionally uses
the Chapman-Jouguet formula

vCJ =
1/

p
3 +

p
↵2 + 2↵/3

1 + ↵
, (23)

where for ↵ ⇠
1

3
one obtains vCJ ⇡ 0.85. Given the large

discrepancy between the di↵erent approaches, we choose
to treat the bubble wall velocity as a free parameter and
leave for a future work to either perform numerical simu-
lations or try to extract qualitative semi-analytic approx-
imations of the bubble wall velocity.

Figure 2 shows our results for the gravitational waves
spectra, together with the expected sensitivity of future
GW experiments. The contours are evaluated by com-
puting the e↵ective action Eq. (16), varying c = 0.1�10.
The lowest line corresponds to c = 0.1, the uppermost to
c = 10, with c = 1 in between. The variation of c a↵ects
the GW spectrum mostly through �/H. [NR: Here we
should probably write a few short sentences about our
assumptions of the hidden sector right? or should we
have these sentences in the beginning of the section?]

8 Provided that we have a dark sector the recent study by [35] sug-
gests that further suppression in the gravitational wave spectra
shall occur if the dark radiation bath’s sound speed deviates a
lot from c2s = 1/3
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FIG. 2. Gravitational wave spectra estimated with our e↵ec-
tive action for IHQCD and the projected sensitivity curves for
future GW experiments: Square Kilometer Array (SKA) [46],
µAres [47], LISA [48], DECIGO/BBO [49], Einsten Telescope
(ET) [50], and Cosmic Explorer (CE) [51]. For illustration, we
choose a critical temperature Tc = 50MeV and Tc = 100GeV,
and the contours denote vw = 1 (grey), vw = 0.1 (red) and
vw = 0.01 (blue).

V. DISCUSSION/CONCLUSION ?

These are just a few bullet points I have come to think
about which perhaps would be nice to write into the dis-
cussion?

• the fact that the main source of error and where
there is also the most optimism in the literature
which concerns the bubble wall velocity should be
taken with great caution as it is clearly evident that
it is the most crucial parameter as we change the
kinetic term coe�cient by a total of 2 orders of
magnitude and get a change in the GW spectra of
about O(15)% meanwhile the same change in the
bubble velocity with vw = 0.1 provides a change of
4 orders of magnitude.

• the fact that we have used a tool which is actu-
ally a proper tool for studying strongly coupled
gauge theories and managed to provide Gravita-
tional wave estimates with a step forward in com-
parison to others for instance [52–54] also other pa-
pers but just as an example and to a good level
of complementarity between us and recent works
[25, 26, 41]

• comments between our results and the results by
[12, 43, 55–58] should be made such that it is clear

Enrico Morgante, Nicklas Ramberg, PS, in preparation

from Schwaller’s talk Helmboldt,JK+van der Woude,’19
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Figure 10. Left: The GW spectrum for the benchmark points BP1 (purple), BP2 (green) and the
power-law-integrated sensitivity of BBO (red dashed curve) as well as DECIGO (blue dashed curve),
where we assume that the threshold SNR is 5 (⇢thr = 5) with five years observation for both detectors.
The GW spectrum is computed including the turbulence contribution, which is about one order of
magnitude smaller than that of the sound-wave contribution. The dotted purple and green lines
present, respectively, the GW spectrum of BP1 and BP2, for which the reduction factor ⌧swH due to
the short sound-wave period is ignored. Right: The ⇠w dependence of SNRBBO (5 yrs). The Jouguet
speed ⇠J is the minimum speed of ⇠w for detonations. At this speed the SNR becomes maximal.

lines), which we obtain without the reduction factor ⌧swH. We see a di↵erence of 2 orders of
magnitude, whose origin is nothing but ⌧swH ⇠ 10�2.

As the last task we consider the dependence of the wall speed ⇠w, because we have
assumed so far that it is equal to the Jouguet speed ⇠J . In the right panel of figure 10 we
show the ⇠w dependence of SNRBBO (5 yrs). In fact, SNRBBO (5 yrs) assumes the maximal
value at ⇠w = ⇠J , which follows from the fact that the reduction factor ⌧swH decreases as ⇠w
increases (see figure 8). But there is still a su�cient range in the parameter space, in which
the detectability threshold is exceeded.

5 Summary and conclusion

In this paper we have studied the stochastic GW background produced at the cosmological
chiral PT in a conformal extension of the SM [21, 22] and extended the analysis of ref. [31]. In
particular, we have re-calculated �/H, because �/H in ref. [31] does not approach the pure
NJL value, ⇠ 104, as the Yukawa coupling y decreases and for this reason we have suspected
that the modified path deformation method of ref. [31] to obtain the bounce solution of a
coupled system fails to yield trustful results.

Therefore, we have adopted an iterative method (with a reasonable convergence prop-
erty) and found that S3/T can be fitted with a simple function (3.17). Using this fitting
function for the determination of �/H we have obtained �/H ' (4 � 9) ⇥ 103 in the op-
timistic parameter space. We also have found that the benchmark point values of �/H
presented in ref. [31] are about one order of magnitude smaller than those calculated by
using the new method.

There are, in the SU(3)V flavor symmetry limit, five independent parameters, �H , �S ,
�HS , y and gH (or the hidden sector scale ⇤H), where e↵ectively two of them are used to
obtain mh = 125GeV and hhi = 246GeV. We have systematically narrowed the parameter
space, giving smaller values of �/H than that of the pure NJL model and hence larger (di-
mensionless) spectral GW energy density ⌦GW. Obviously, ⌦GW will be smaller in other
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Figure 7. Left: �/H against the Yukawa coupling y for �S = 0.001 and �HS = 0, which should
be compared with �NJL/H = 1.4 ⇥ 104 [60] (the value without the singlet scalar S). In contrast to
�/H, ↵ di↵ers only slightly from the pure NJL value: g⇤↵ ' 3.8, where it is about 3.2 in the pure
NJL case [60]. Beyond y & 0.00172 (for �S = 0.001), the local minimum on the left side in figure 6
becomes deeper in such a way that the iterative process in solving the coupled di↵erential equations
given in (3.12) and (3.13) do not converge, and consequently our method can not be applied. This
area in the parameter space is indicated by “inaccessible”. Right: The y-dependence of Tn/TC for
�S = 0.001 and �HS = 0.

we show �/H for several values of y with �S and �HS fixed at 0.001 and 0, respectively.
Since �/H ' 1.4⇥ 104 in the pure NJL model [60], we see from figure 7 that the larger y is,
the more deviation from the pure NJL model we can expect. The right panel shows the y-
dependence of Tn/TC for �S = 0.001 and �HS = 0, from which we see that in contrast to �/H
the value of Tn/TC does not change very much as y changes.8 For y & 0.00172 our iterative
method breaks down (as it is explained in section 3.2), so that we stop at y = 0.00172 for
this example.

4.3 Released vacuum energy

As we see from figure 7, �/H is large ⇠ 103. Therefore, the scalar contribution ⌦' to
the GW spectrum, being proportional to (�/H)�2, is much more suppressed than the other
contributions ⌦sw and ⌦turb, because they are proportional to (�/H)�1 (see eqs. (4.21), (4.24)
and (4.27)). Furthermore, as we will see, the turbulence contribution ⌦turb is suppressed,
compared with ⌦sw, because the relevant GW frequency f is much larger than hn, the Hubble
parameter at Tn, which is red-shifted today. Therefore, we here focus on the sound-wave
contribution and follow the treatment of ref. [69]. It should be noted that the definition of
↵ in ref. [69] is not the ratio of the latent heat released at the PT to the radiation energy
of the Universe. Instead, they use the trace of the energy momentum tensor of the plasma,
leading to

↵ =
1

⇢rad(Tn)

 
�V (Tn)�

1

4
T
@�V (T )

@T

����
T=Tn

!
, (4.9)

where �V (T ) = VEFF(0, 0, T ) � VEFF(hSi, h�i, T ), and ⇢rad(T ) = ⇡2g⇤T 4/30. According to
ref. [69], if the speed of the wall ⇠w is larger than ⇠J , we may identify the vacuum energy den-

8
�/H computed in ref. [31] does not seem to approach the pure NJL value, ⇠ 104, as the Yukawa coupling

y goes to zero (see, e.g, the result for the case C in TABLE I and II; y = 1.07⇥ 10�4 but �/H = 7.15⇥ 102.)
Therefore, we suspect that the modified path deformation method of ref. [31] to obtain the bounce solution
of a coupled system fails to yield trustful results.
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Desert

Is the spontaneous generation  of M

related to SM?

Yes, due to the desert.

Q.Gravity

Pl



Perturbative scenario
based on renormalizability 
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Renormalizability + scale invariance

The naturalness may be achieved

Salvio+Strumia,’14;’18   

Naturalness of λ HS

1

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ⇒ safeness of λH ⇒ multiplicative solution

3. The desert ⇒ the SM and Planck scale physics are directly related

Safeness of λH ⇔ Inflationary parameters

Phenomenogical aspect:

1. For CW breaking: Supercooling ⇒ new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT⇒ suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2 model of Starobinsky

⇒ r >∼ rR2 ∼ O(10−3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc
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2
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(4π)2
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∆λHS <∼ 2.5 · 10−33 ξS
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I. responsible for  the naturalness of   λ 

and at the same time 

II.           the slow-roll parameters of inflation

 for Higgs inflation

for R^2 Inflation 
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1. For CW breaking: Supercooling ⇒ new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT⇒ suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2 model of Starobinsky

⇒ r >∼ rR2 ∼ O(10−3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc

ξ

ξH <∼ 2.5 · 10−(15∼16)

10−(18∼19) ξH <∼ 2.5 · 10−33

M2
Pl = ξS〈S〉2 → λHS〈S〉2H†H → λHS〈S〉2 <∼ O(m2

H)

λHS/ξS <∼ M2
Pl/m

2
H ∼ 2.5 · 10−33 !!

µ
dλHS

dµ
= − ξS

(4π)2

( 5ξH
4

κ−2 +
ξH
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γ−2
(
1 + 6ξH

)
(1 + 6ξS

) )
+O(λHS)

∆λHS <∼ 2.5 · 10−33 ξS
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FIG. 4. The prediction on the inflationary parameters for �S = 0.012 and y = 4.00 ⇥ 10�3 (solid

line) and 4.00 ⇥ 10�4 (dashed line), while the color represents Ne. The benchmark point (45) is

marked by a cross. Left: � and � that satisfy Eq. (43). Right: The prediction in the ns � r plane,

where the solid (dashed) blue lines are one (two) � constraint by Planck [24, 25].

FIG. 5. The same as for Fig. 4 for �S = 1.20 ⇥ 10�6.

ns � r plane, because we vary �̄. Therefore, there is a one-to-one correspondence between

the lines in the left panels and right panels. The y dependence of ns and r is indeed small,

but ⇤H/MPl is quite di↵erent as we can see from Eqs. (44) and (47). By comparing Fig. 4

with Fig. 6, we can also see that ns becomes larger if �S becomes larger. The solid (dashed)

blue lines in the right panels indicates the one-(two-) � constraint by Planck [24, 25]. We

see that the model predictions are in good agreement with the experimental data.
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Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ) safeness of �H ) multiplicative solution

3. The desert ) the SM and Planck scale physics are directly related

Safeness of �H , Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?

⇠

�HS

(⇠H <⇠ 10�14 and  >⇠ 108) OR (⇠H ' �1/6 and  >⇠ 1019)

1.6 · 10�(18⇠19) ⇠H <⇠ 3.7 · 10�33 and  >⇠ 108



Summary

LiteBIRD

1

�HS

| {z }

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ) naturalness of �HS ) multiplicative solution

3. The desert ) the SM and Planck scale physics are directly related

Naturalnessof �HS , Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Short duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?

⇠

�

H
⇠ S3/Tn ⇠ O(100)

�HS

(⇠H <⇠ 10�14 and  >⇠ 108) OR (⇠H ' �1/6 and  >⇠ 1019)
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