New Physics, EFTs & the on-shell approach

Alex Pomarol, IFAE & UAB (Barcelona) and CERN

assumption based on the many tests of the SM!

... and that Nature does not conspire to fool us!

We can then Taylor expand (SM fields and derivative over Λ):

(assuming lepton & baryon number)

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2}\right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$
dimension-4 terms:
$$\frac{\text{The SM}}{1}$$

We can then Taylor expand (SM fields and derivative over Λ):

(assuming lepton & baryon number)

$$\mathcal{L}_{eff} = \frac{\Lambda^4}{g_*^2} \mathcal{L} \left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2} \right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$
dimension-4 terms:
$$\frac{\mathbf{The SM}}{\mathbf{Inderse}}$$
dimension-6 terms:
$$\frac{\mathbf{Leading}}{\mathbf{deviations}}$$

Dimension-6 operators

$$\begin{split} \mathcal{O}_{H} &= \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ \mathcal{O}_{6} &= \lambda |H|^{6} \\ \hline \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^{a}_{\mu\nu} \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{2W} &= -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^{2} \\ \mathcal{O}_{2B} &= -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^{2} \\ \mathcal{O}_{2G} &= -\frac{1}{2} (D^{\mu} G^{A}_{\mu\nu})^{2} \\ \hline \mathcal{O}_{BB} &= g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{GG} &= g^{2}_{s} |H|^{2} G^{A}_{\mu\nu} G^{A\mu\nu} \\ \hline \mathcal{O}_{HW} &= ig(D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W^{a}_{\mu\nu} \\ \mathcal{O}_{HB} &= ig'(D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ \mathcal{O}_{3W} &= \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b\nu}_{\nu\rho} W^{c\rho\mu} \\ \mathcal{O}_{3G} &= \frac{1}{3!} g_{s} f_{ABC} G^{A\nu}_{\mu} G^{B\nu}_{\nu\rho} G^{C\rho\mu} \end{split}$$

Grzadkowski et.al. JHEP 1010 (2010) 085

assuming L & B

	$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$
	$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$
	$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{L}_L \gamma^{\mu} L_L)$
	$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
	$\mathcal{O}_{LR}^u = (\bar{Q}_L \gamma^\mu Q_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^d = (\bar{Q}_L \gamma^\mu Q_L) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_{LR}^e = (\bar{L}_L \gamma^\mu L_L) (\bar{e}_R \gamma^\mu e_R)$
	$\mathcal{O}_{LR}^{(8)u} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{u}_R \gamma^\mu T^A u_R)$	$\mathcal{O}_{LR}^{(8)d} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{d}_R \gamma^\mu T^A d_R)$	
	$\mathcal{O}_{RR}^u = (\bar{u}_R \gamma^\mu u_R) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}^d_{RR} = (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}^e_{RR} = (\bar{e}_R \gamma^\mu e_R) (\bar{e}_R \gamma^\mu e_R)$
	$\mathcal{O}^q_{LL} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_{LL}^l = (\bar{L}_L \gamma^\mu L_L) (\bar{L}_L \gamma^\mu L_L)$
,	$\mathcal{O}_{LL}^{(8)q} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma^\mu T^A Q_L)$		
ν	$\mathcal{O}_{LL}^{ql} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{L}_L \gamma^\mu L_L)$		
	$\mathcal{O}_{LL}^{(3)ql} = (\bar{Q}_L \gamma^\mu \sigma^a Q_L) (\bar{L}_L \gamma^\mu \sigma^a L_L)$		
	$\mathcal{O}_{LR}^{qe} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{e}_R \gamma^\mu e_R)$		
_]	$\mathcal{O}_{LR}^{lu} = (\bar{L}_L \gamma^\mu L_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^{ld} = (\bar{L}_L \gamma^\mu L_L) (\bar{d}_R \gamma^\mu d_R)$	
	$\mathcal{O}_{RR}^{ud} = (\bar{u}_R \gamma^\mu u_R) (\bar{d}_R \gamma^\mu d_R)$		
	$\mathcal{O}_{RR}^{(8)ud} = (\bar{u}_R \gamma^\mu T^A u_R) (\bar{d}_R \gamma^\mu T^A d_R)$		
	$\mathcal{O}_{RR}^{ue} = (\bar{u}_R \gamma^\mu u_R) (\bar{e}_R \gamma^\mu e_R)$	$\mathcal{O}_{RR}^{de} = (\bar{d}_R \gamma^\mu d_R) (\bar{e}_R \gamma^\mu e_R)$	
	$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R)$		
	$\mathcal{O}_{y_u y_d} = y_u y_d (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{Q}_L^s d_R)$		
	$\mathcal{O}_{y_u y_d}^{(8)} = y_u y_d (\bar{Q}_L^r T^A u_R) \epsilon_{rs} (\bar{Q}_L^s T^A d_R)$		
a^{-}	$\mathcal{O}_{y_u y_e} = y_u y_e (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{L}_L^s e_R)$		
$u\nu$	$\mathcal{O}'_{y_u y_e} = y_u y_e (\bar{Q}_L^{r\alpha} e_R) \epsilon_{rs} (\bar{L}_L^s u_R^\alpha)$		
,	$\mathcal{O}_{y_e y_d} = y_e y_d^{\dagger}(\bar{L}_L e_R)(\bar{d}_R Q_L)$		
·	$\mathcal{O}^u_{DB} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \widetilde{H} g' B_{\mu\nu}$	$\mathcal{O}^d_{DB} = y_d \bar{Q}_L \sigma^{\mu\nu} d_R H g' B_{\mu\nu}$	$\mathcal{O}^e_{DB} = y_e \bar{L}_L \sigma^{\mu\nu} e_R H g' B_{\mu\nu}$
	$\mathcal{O}^u_{DW} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \sigma^a \widetilde{H} g W^a_{\mu\nu}$	$\mathcal{O}^d_{DW} = y_d \bar{Q}_L \sigma^{\mu\nu} d_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}^e_{DW} = y_e \bar{L}_L \sigma^{\mu\nu} e_R \sigma^a H g W^a_{\mu\nu}$
<i>u</i>	$\mathcal{O}_{DG}^{u} = y_u \bar{Q}_L \sigma^{\mu\nu} T^A u_R \widetilde{H} g_s G^A_{\mu\nu}$	$\mathcal{O}_{DG}^d = y_d \bar{Q}_L \sigma^{\mu\nu} T^A d_R H g_s G^A_{\mu\nu}$	

Too many terms to understand the implications?

The SM EFT is an useful approach as it allows to better <u>understand</u> the <u>interplay</u> of different experiments

Many many examples of correlations:

I) Either by operator mixing:

Low-energy experiments can be affected by **different** operators

CP-violating Higgs operators

Much better constraints from these observables!

_	$\mathrm{BR}(\mu \to e \gamma)$	$\mathrm{BR}(\mu \to eee)$
Current	$4.2 \cdot 10^{-13} [33]$	$1\cdot 10^{-12} \ [34]$
Future	$6.0 \cdot 10^{-14} \; [37]$	$1 \cdot 10^{-16} \; [38]$

LHC bounds on $Z,h \rightarrow \mu e$ orders of magnitude below!

2) Either by accidental symmetries:

• Deviations in Z/W couplings to fermions related:

 $Zf_Lf_L \leftrightarrow Vf_Lf_L'$ Custodial symmetry in \mathcal{L}_6 !

2) Either by accidental symmetries: Test of τ/μ and τ/e Universality in W Decays Deviations in Z/W couplings to fermions related:

 $Zf_{L}f_{L} \leftrightarrow Vf_{L}f_{L}'$ Custodial symmetry in $\mathcal{L}_{6}!_{Run-2}$

CMS-I

2) Either by accidental symmetries:

• Deviations in Z/W couplings to fermions related:

 $Zf_Lf_L \leftrightarrow Vf_Lf_L'$ Custodial symmetry in \mathcal{L}_6 !

• Deviations in $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ related:

AP, Riva 308.2803

$$\lambda_{WZ}^{2} \equiv \frac{\Gamma(h \to WW^{(*)})}{\Gamma^{\text{SM}}(h \to WW^{(*)})} \frac{\Gamma^{\text{SM}}(h \to ZZ^{(*)})}{\Gamma(h \to ZZ^{(*)})} \approx 1 + 0.6 \, \delta g_{1} Z - 0.5 \, \delta K_{Y} - 1.6 \, K_{ZY}$$

$$TGC \quad h \to ZY$$

Not expected to see these deviations at the LHC!

Nevertheless, a lot of *unexplained* cancelations ("**zeros")** reported in the last years...

I. Many absence of mixings to dipoles

☞ give zero mixing

at leading order

I. Many absence of mixings to dipoles

 $F^{\mu
u}\psi\sigma_{\mu
u}\psi H$

☞ give zero mixing

at leading order

II. No p²H⁴ corrections to Hyy

Serve zero mixing

at leading order

Finite terms to $H\gamma\gamma$

No contribution $O(I/M^2)$ to **dipoles** from a heavy E+L fermion:

Asking for a better understanding...

II. EFT (EFfective Theories) from on-shell amplitudes

An important gain in simplicity:

the power of being on-shell!

An important gain in simplicity:

the power of being on-shell!

of Amplitudes

Expansion: $\langle ij \rangle / \Lambda$, $[ij] / \Lambda$

SM "Building-blocks":

At O(E^{2}/Λ^{2}):

n = number of external statesh = helicity of the amplitude

$$\mathcal{A}_{F^3}(1_{V_-}, 2_{V_-}, 3_{V_-}) = \frac{C_{F^3}}{\Lambda^2} \langle 12 \rangle \langle 23 \rangle \langle 31 \rangle$$

n=4 h=-2

> n=4 h=0

$$\mathcal{A}_{F^{2}\phi^{2}}(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}) = \frac{C_{F^{2}\phi^{2}}}{\Lambda^{2}} \langle 12 \rangle^{2},$$

$$\mathcal{A}_{F\psi^{2}\phi}(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}) = \frac{C_{F\psi^{2}\phi}}{\Lambda^{2}} \langle 12 \rangle \langle 13 \rangle,$$

$$\mathcal{A}_{\psi^{4}}(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}) = \left(C_{\psi^{4}} \langle 12 \rangle \langle 34 \rangle + C_{\psi^{4}}' \langle 13 \rangle \langle 24 \rangle\right) \frac{1}{\Lambda^{2}}$$

$$\mathcal{A}_{\Box\phi^{4}}(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}) = \left(C_{\Box\phi^{4}}\langle 12\rangle [12] + C_{\Box\phi^{4}}'\langle 13\rangle [13]\right) \frac{1}{\Lambda^{2}}$$
$$\mathcal{A}_{\psi\bar{\psi}\phi^{2}}(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}) = \frac{C_{\psi\bar{\psi}\phi^{2}}}{\Lambda^{2}}\langle 13\rangle [23],$$
$$\mathcal{A}_{\psi^{2}\bar{\psi}^{2}}(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}) = \frac{C_{\psi^{2}\bar{\psi}^{2}}}{\Lambda^{2}}\langle 12\rangle [34].$$

At O(E^{2}/Λ^{2}):

n = number of external statesh = helicity of the amplitude

$$\mathcal{A}_{F^3}(1_{V_-}, 2_{V_-}, 3_{V_-}) = \frac{C_{F^3}}{\Lambda^2} \langle 12 \rangle \langle 23 \rangle \langle 31 \rangle$$

$$\begin{aligned} \mathcal{A}_{F^{2}\phi^{2}}(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}) &= \frac{C_{F^{2}\phi^{2}}}{\Lambda^{2}} \langle 12 \rangle^{2}, \\ \mathcal{A}_{F\psi^{2}\phi}(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}) &= \frac{C_{F\psi^{2}\phi}}{\Lambda^{2}} \langle 12 \rangle \langle 13 \rangle \longrightarrow F^{\mu\nu}\psi\sigma_{\mu\nu}\psi H \\ \mathcal{A}_{\psi^{4}}(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}) &= (C_{\psi^{4}} \langle 12 \rangle \langle 34 \rangle + C_{\psi^{4}}' \langle 13 \rangle \langle 24 \rangle) \frac{1}{\Lambda^{2}} \\ \mathcal{A}_{\Box\phi^{4}}(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}) &= (C_{\Box\phi^{4}} \langle 12 \rangle [12] + C_{\Box\phi^{4}}' \langle 13 \rangle [13]) \frac{1}{\Lambda^{2}} \\ \mathcal{A}_{\psi\bar{\psi}\phi^{2}}(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}) &= \frac{C_{\psi\bar{\psi}\phi^{2}}}{\Lambda^{2}} \langle 13 \rangle [23], \\ \mathcal{A}_{\psi^{2}\bar{\psi}^{2}}(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}) &= \frac{C_{\psi^{2}\bar{\psi}^{2}}}{\Lambda^{2}} \langle 12 \rangle [34]. \end{aligned}$$

$$\mathcal{A}_{\psi^{2}\phi^{3}}(1_{\psi}, 2_{\psi}, 3_{\phi}, 4_{\phi}, 5_{\phi}) = \frac{C_{\psi^{2}\phi^{3}}}{\Lambda^{2}} \langle 12 \rangle \qquad n=5 \\ h=-1$$

$$\mathcal{A}_{\phi^{6}}(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}, 5_{\phi}, 6_{\phi}) = \frac{C_{\phi^{6}}}{\Lambda^{2}} \qquad n=6 \\ h=0$$

III. EFT renormalization via amplitude methods

1505.01844 (also by susy techniques:1412.7151)

No 4-fermion $(\psi \overline{\gamma}^{\mu} \psi)^2$ corrections to dipoles

 $F^{\mu\nu}\psi\sigma_{\mu\nu}\psi H$

1505.01844 (also by susy techniques:1412.7151)

No 4-fermion $(\psi \overline{\gamma}^{\mu} \psi)^2$ corrections to dipoles

 $F^{\mu\nu}\psi\sigma_{\mu\nu}\psi H$

$$\gamma \mathcal{A}_{WHle} = -\frac{1}{4\pi^3} \int d\text{LIPS}\,\mathcal{A}_{luqe}(1_e, 2_l, 3'_{\bar{e}}, 4'_{\bar{l}}) \times \mathcal{A}_{SM}(4'_e, 3'_l, 3_{W_-^a}, 4_{H^\dagger})$$

1505.01844 (also by susy techniques:1412.7151)

No 4-fermion $(\psi \overline{\gamma}^{\mu} \psi)^2$ corrections to dipoles

No p²H⁴ corrections to Hyy e.g. / $(H^{\dagger}D_{\mu}H)^{2}$

 $F_{\alpha\beta}F^{\alpha\beta}h^2$

No p²H⁴ corrections to Hyy e.g./ $(H^{\dagger}D_{\mu}H)^{2}$

 $F_{\alpha\beta}F^{\alpha\beta}h^2$

No p²H⁴ corrections to Hyy e.g./ $(H^{\dagger}D_{\mu}H)^{2}$

 $F_{\alpha\beta}F^{\alpha\beta}h^2$

h_{total} = -2 Absent in the SM

But the **on-shell methods** also tell us about the non-zero result

Contributions to **dipoles** from **Feynman** approach:

very **different** contributions

But the **on-shell methods** also tell us about the non-zero result

From on-shell approach: $\gamma A_i \sim \sum A_j A_{SM}$

But the **on-shell methods** also tell us about the non-zero result

From **on-shell** approach: $\gamma A_i \sim \sum A_j A_{SM}$

from the same SM amplitude!

But the **on-shell methods** also tell us about the non-zero result

From on-shell approach: $\gamma A_i \sim \sum A_j A_{SM}$

No calculation wasted the on-shell method

from the same SM amplitude!

But there is more to say by angular-momentum decomposition (partial-waves)

B. vonHarling, P. Baratella, C. Fernandez, AP 2010.13809

angular-momentum selection rules

see also arXiv:2001.04481

Amplitudes with J≠I cannot contribute to dipoles

Anomalous Dimensions as a product of partial-waves

B. vonHarling, P. Baratella, C. Fernandez, AP 2010.13809

 $\gamma_i \sim a_{\rm SM}^J a_{\rm BSM}^J$ ► I/Λ² amplitude

2005.06983 2005.12917 2112.12131

Two-loops for $\mu \rightarrow e\gamma$

J. Elias-Miro, C. Fernandez, M. Gümüs, AP 2112.12131

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{R}\gamma^{\mu}\mu_{R})$ affects $\mu \rightarrow e\gamma$ at the two-loop level: $\searrow Z \rightarrow \mu e$

product of tree-level amplitudes

Finite terms?

Difficult in general, **but** simplifies a lot for BSM calculations, where new physics scale **M** >> **E**_{exp}

New insights from the **amplitude** method!

~ O(I/M4)

N.Arkani-Hamed, K. Harigaya 2106.01373

Finite terms to g-2

No contribution $O(1/M^2)$ to **dipoles** from a heavy singlet + doublet fermion:

even under S↔L

Finite terms to g-2

No contribution $O(1/M^2)$ to **dipoles** from a heavy singlet + doublet fermion:

Finite terms to g-2

No contribution $O(1/M^2)$ to **dipoles** from a heavy singlet + doublet fermion:

L. Delle Rosse, B. von Harling, AP in 2201.10572

Following the same argument, more zeros can be found:

Scalar + heavy doublet + charged fermion:

• Beyond g-2: Zeros in hyy

Conclusions

- The SM is an EFT: dimension-6 interactions are there waiting to be discovered (not clear though at which scale)
- EFT approach useful to understand correlations
- Nevertheless, many unexplained patterns (one-loop "zeros")

```
Getting on-shell!
```

- Allows to construct **BSM without Lagrangians**
 - Calculation of loop effects: Simpler with easy recycling

many "emergent" selection rules

many relations between anomalous dimensions

Conclusions

- The SM is an EFT: dimension-6 interactions are there waiting to be discovered (not clear though at which scale)
- EFT approach useful to understand correlations
- Nevertheless, many unexplained patterns (one-loop "zeros")

```
Getting on-shell!
```


- Allows to construct **BSM without Lagrangians**
- Calculation of loop effects: Simpler with easy recycling

many "emergent" selection rules

many relations between anomalous dimensions

	$\mu \to e \gamma$	$\mu \rightarrow eee$	$\mu N \to eN$	$h \rightarrow \mu e$
Ohe Ohe	$951 { m TeV}$	218 TeV	208 TeV	
$C_{DB}^{\mu e} - C_{DW}^{\mu e}$	(1547 TeV)	$(2183 { m TeV})$	(1812 TeV)	
$C_{DB}^{\mu e} + C_{DW}^{\mu e}$	$127 { m TeV}$	$26 { m TeV}$	$24 { m TeV}$	
	(214 TeV)	(309 TeV)	(253 TeV)	
$C_R^{\mu e}$	$35 { m TeV}$	160 TeV	225 TeV	
	(59 TeV)	$(1602 { m TeV})$	$(1535 { m TeV})$	
$C_L^{\mu e} + C_{L3}^{\mu e}$	4 TeV	164 TeV	225 TeV	
	(7 TeV)	$(1642 { m TeV})$	$(1535 { m TeV})$	
$C_L^{\mu e} - C_{L3}^{\mu e}$	24 TeV	35 TeV	50 TeV	
	(41 TeV)	(421 TeV)	(395 TeV)	
$C_{LuQe}^{\mu ett}$	304 TeV	63 TeV	59 TeV	
	(510 TeV)	(735 TeV)	(604 TeV)	
quett	80 TeV	14 TeV	5 TeV	
$C_{LeQu}^{\mu ett}$	$(141 { m TeV})$	$(209 { m TeV})$	(57 TeV)	
Cµeee		207,174 TeV	· · · /	
$C_{LL(RR),LR(RL)}^{\mu\nu\nu\nu}$		(2070,1740 TeV)		
			352 TeV	
$C_{LL,RR,LR}^{\mu\nu\mu\nu}$			(2693 TeV)	
			376 TeV	
$C_{LL,RR,LR}^{\mu cuu}$			(2725 TeV)	
$C_{LR}^{\mu dde}$			18 TeV	
			(164 TeV)	
$C_{LL,RR,LR,RL}^{\mu e \tau \tau}$		14,16,14,16 TeV	22 TeV	
		(174,194,174,194 TeV)	(200 TeV)	
CULPTT		20 TeV	55 TeV	
$C_{LL3}^{\mu e au au}$		(247 TeV)	(476 TeV)	
$C_{LL,RR,LR,RL}^{\mu ett}$	122 TeV	21 TeV	22,32,32,22 TeV	
	$(214 { m TeV})$	(317 TeV)	(200,290,290,200 TeV)	
quett	230 TeV	41 TeV	100 TeV	
$C_{LL3}^{\mu ett}$	$(401 { m TeV})$	$(592 { m TeV})$	(851 TeV)	
$C_{LL,RR,LR,RL}^{\mu ebb}$	× /	14,16,14,16 TeV	22 TeV	
		(174, 194, 174, 194 TeV)	(200 TeV)	
$C_y^{\mu e}$	4 TeV	1 TeV	1 TeV	0.3 TeV
		— - ·		

$$|d_e| < 1.1 \cdot 10^{-29} \,\mathrm{e} \cdot \mathrm{cm}$$
.

tree-level				
C_{eW}	$5.5 \times 10^{-5} y_e g$			
C_{eB}	$5.5 \times 10^{-5} y_e g'$			
one-loop				
Cluqe	$1.0 \times 10^{-3} y_e y_t$			
$C_{W\widetilde{W}}$	$4.7 imes 10^{-3} g^2$			
$C_{B\widetilde{B}}$	$5.2 \times 10^{-3} g'^2$			
$C_{W\widetilde{B}}$	$2.4 \times 10^{-3} gg'$			
$C_{\widetilde{W}}$	$6.4 imes 10^{-2} g^3$			

two-loops				
C_{lequ}	$3.8 \times 10^{-2} y_e y_t$			
$C_{\tau W}$	$260 y_{\tau} g$			
$C_{\tau B}$	$380 y_{\tau} g'$			
C_{tW}	$6.9 \times 10^{-3} y_t g$			
C_{tB}	$1.2\times 10^{-2}y_tg'$			
C_{bW}	$64 y_b g$			
C_{bB}	$47 y_b g'$			
$C_{le\bar{d}\bar{q}}$	$10 y_e y_t (y_t/y_b)$			
$C_{le\bar{e}'\bar{l}'}$	$0.63 y_e y_t (y_t/y_ au)$			

two-loops finite				
C_{y_e}	$14 y_e \lambda_h$			
C_{y_t}	$14 y_t \lambda_h$			
C_{y_b}	$2.9 \times 10^3 y_b \lambda_h$			
$C_{y_{\tau}}$	$3.4 \times 10^3 y_\tau \lambda_h$			