New Physics, EFTs
 \& the on-shell approach

Alex Pomarol, IFAE \& UAB (Barcelona) and CERN

EFT approach to new physics

\rightarrow Effective Field Theory

To (humbly) accept that:

The SM provides a good description of physics at low-energies $(\mathrm{E} \ll \Lambda)$

assumption based on the many tests of the SM!
... and that Nature does not conspire to fool us!

We can then Taylor expand (SM fields and derivative over \wedge):

(assuming lepton \& baryon number)

$$
\begin{gathered}
\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}, ~} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots \\
\text { dimension-4 terms: } \\
\text { The SM }
\end{gathered}
$$

We can then Taylor expand (SM fields and derivative over Λ):
(assuming lepton \& baryon number)

$$
\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots
$$

Dimension-6 operators

$\begin{gathered} \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}\|H\|^{2}\right)^{2} \\ \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)^{2} \\ \mathcal{O}_{6}=\lambda\|H\|^{6} \end{gathered}$
$\begin{gathered} \hline \hline \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\ \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\ \left.-\overline{\mathcal{O}}_{2 W}=-\frac{1}{2}\left(\bar{D}^{\mu} W_{\mu \nu}^{\bar{a}}\right)^{2}\right)^{--} \\ \mathcal{O}_{2 B}=-\frac{1}{2}\left(\partial^{\mu} B_{\mu \nu}\right)^{2} \\ \mathcal{O}_{2 G}=-\frac{1}{2}\left(D^{\mu} G_{\mu \nu}^{A}\right)^{2} \end{gathered}$
$\begin{gathered} \hline \mathcal{O}_{B B}=g^{\prime 2}\|H\|^{2} B_{\mu \nu} B^{\mu \nu} \\ \mathcal{O}_{G G}=g_{\underline{s}}^{2}\|H\|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \end{gathered}$
$\begin{gathered} \mathcal{O}_{H W}=i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a} \\ \mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \end{gathered}$
$\begin{aligned} & \mathcal{O}_{3 W}=\frac{1}{3!} g_{a b c} W_{\mu}^{a} W_{\nu \rho}^{b} W^{c \rho \mu} \\ & \mathcal{O}_{3 G}=\frac{1}{3!} g_{s} f_{A B C} G_{\mu}^{A \nu} G_{\nu \rho}^{B} G^{C \rho \mu} \end{aligned}$

assuming L \& B

$\mathcal{O}_{y_{u}}=y_{u}\|H\|^{2} \bar{Q} \bar{Q}_{L} \widetilde{H} u_{R}$	$\mathcal{O}_{y_{d}}=y_{d}\|H\|^{2} \bar{Q}_{L} H d_{R}$	$\mathcal{O}_{y_{e}}=y_{e}\|H\|^{2} \bar{L}_{L} H e_{R}$
$\begin{gathered} \mathcal{O}_{R}^{u}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{L}^{q}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\ \mathcal{O}_{L}^{(3) q}=\left(i H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \end{gathered}$	$\mathcal{O}_{R}^{d}=\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\begin{gathered} \mathcal{O}_{R}^{e}=\left(i H^{\dagger} \stackrel{\overleftrightarrow{D_{\mu}}}{ } H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{L}^{l}=\left(i H^{\dagger} \vec{D}_{\mu} H\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \mathcal{O}_{L}^{(3) \iota}=\left(i H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right) \end{gathered}$
$\begin{gathered} \mathcal{O}_{L R}^{u}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu}{ }^{\mu}\right) \\ \mathcal{O}_{L R}^{(8) u}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right) \\ \mathcal{O}_{R R}^{u}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{L L}^{q}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\ \mathcal{O}_{L L}^{(8) q}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{L R}^{d}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\ \mathcal{O}_{L R}^{(8) d}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} T^{A} d_{R}\right) \\ \mathcal{O}_{R R}^{d}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{L R}^{e}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{R R}^{e}=\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{L L}^{l}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \end{gathered}$
$\begin{gathered} \mathcal{O}_{L L}^{a l}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \mathcal{O}_{L L}^{(3) a l}=\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right) \\ \mathcal{O}_{L R}^{q e}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{L R}^{l u}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{d R}^{u d}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\ \mathcal{O}_{R R}^{(8) u d}=\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right)\left(\bar{d}_{R} \gamma^{A} T^{A} d_{R}\right) \\ \mathcal{O}_{R R}^{u e}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \end{gathered}$	$\mathcal{O}_{L R}^{l d}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$ $\mathcal{O}_{R R}^{d e}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$	
$\mathcal{O}_{R}^{u d}=y_{u}^{\dagger} y_{d}\left(i \widetilde{H}^{\dagger}{\left.\stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)}^{\text {d }}\right.$		
$\begin{gathered} \mathcal{O}_{y_{u} y_{d}=y_{u} y_{d}\left(\bar{Q}_{L}^{r} u_{R} \epsilon_{r s}\left(\bar{Q}_{L}^{s} d_{R}\right)\right.}^{\mathcal{O}_{y_{u}} y_{d}=y_{u} y_{d}\left(\bar{Q}_{L}^{r} T^{A} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} T^{A} d_{R}\right)} \\ \mathcal{O}_{y_{u} y_{e}} y_{u} y_{e}\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r r}\left(\bar{L}_{L}^{s} e_{R}\right) \\ \mathcal{O}_{y_{u} y_{e}}=y_{u} y_{e}\left(\bar{Q}_{L}^{r a} e_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} u_{R}^{\alpha}\right) \\ \mathcal{O}_{y_{e} y_{d}}=y_{e} y_{d}^{\top}\left(\bar{L}_{L} e_{R}\right)\left(\bar{d}_{R} Q_{L}\right) \end{gathered}$		
$\begin{gathered} \mathcal{O}_{D B}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \widetilde{H} g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \sigma^{a} \widetilde{H} g W_{\mu \nu}^{a} \\ \mathcal{O}_{D G}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} u_{R} \widetilde{H} g_{s} G_{\mu \nu}^{A} \end{gathered}$	$\begin{gathered} \mathcal{O}_{D B}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} H g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} \sigma^{a} H g W_{\mu \nu}^{a} \\ \mathcal{O}_{D G}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} d_{R} H g_{s} G_{\mu \nu}^{A} \end{gathered}$	$\begin{gathered} \mathcal{O}_{D B}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} H g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} \sigma^{a} H g W_{\mu \nu}^{a} \end{gathered}$

Too many terms to understand the implications?

The SM EFT is an useful approach as it allows to better understand the interplay of different experiments

Many many examples of correlations:

I) Either by operator mixing:

Low-energy experiments can be affected by different operators

CP-violating Higgs operators

$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{R} \gamma^{\mu} \mu_{R}\right)$
$\rightarrow \mathbf{Z} \rightarrow \boldsymbol{\mu} \mathbf{e}$

$$
H|H|^{2} \bar{L}_{L} \mu_{R}
$$

$$
h \rightarrow \mu \mathbf{e}
$$

$\mu \rightarrow \mathrm{e}$, ,eee

Much better constraints from these observables!

	$\operatorname{BR}(\mu \rightarrow e \gamma)$	$\operatorname{BR}(\mu \rightarrow e e e)$
Current	$4.2 \cdot 10^{-13}[33]$	$1 \cdot 10^{-12}[34]$
Future	$6.0 \cdot 10^{-14}[37]$	$1 \cdot 10^{-16}[38]$

LHC bounds on Z,h $\rightarrow \mu \mathrm{e}$ orders of magnitude below!

2) Either by accidental symmetries:

- Deviations in Z/W couplings to fermions related:

Zfffil \longleftrightarrow Wffif ${ }^{\prime} \quad$ Custodial symmetry in \mathcal{L}_{6} !

2) Either by accidental symmetries:

- Deviations in Z/W couplings to fermions related:

Zfffl \longleftrightarrow Wfffic Custodial symmetry in \mathcal{L}_{6} !

After LEP Z-measurements, not expected deviations in Wfffi at the LHC

2) Either by accidental symmetries:

- Deviations in Z/W couplings to fermions related:

Zfffl \longleftrightarrow Wffife \quad Custodial symmetry in \mathcal{L}_{6} !

- Deviations in $\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$ and $\mathrm{H} \rightarrow \mathrm{WW}$ * related:

$$
\lambda_{W Z}^{2} \equiv \frac{\Gamma\left(h \rightarrow W W^{(*)}\right)}{\Gamma^{\operatorname{sM}^{\mathrm{M}}\left(h \rightarrow W W^{(*)}\right)}} \frac{\mathrm{S}^{\mathrm{sM}}\left(h \rightarrow Z Z^{(*)}\right)}{\Gamma\left(h \rightarrow Z Z^{(*)}\right)} \approx \mathrm{I}+0.6 \delta \mathrm{~g}_{\mathrm{I}} \mathrm{Z}-0.5 \delta \mathrm{~K}_{\mathrm{Y}}-\mathrm{I} .6 \mathrm{KZY}
$$

Not expected to see these deviations at the LHC!

Nevertheless, a lot of unexplained cancelations ("zeros") reported in the last years...

I. Many absence of mixings to dipoles $F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H$

give zero mixing at leading order

I. Many absence of mixings to dipoles $F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H$

give zero mixing at leading order
II. No $\mathbf{p}^{\mathbf{2}} \mathbf{H}^{4}$ corrections to H_{y}
$F^{\mu \nu} F_{\mu \nu}|H|^{2}$

give zero mixing at leading order

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

$\sim O\left(\mathrm{I} / \mathrm{M}^{4}\right)$
N.Arkani-Hamed, K. Harigaya 2IO6.01373

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

$\sim O\left(\mathrm{I} / \mathrm{M}^{4}\right)$
N.Arkani-Hamed, K. Harigaya 2I06.0|373

Finite terms to $\mathbf{H} \boldsymbol{\gamma} \boldsymbol{\gamma}$

No contribution $O\left(1 / \mathrm{M}^{2}\right)$ to dipoles from a heavy E+L fermion:
L. Delle Rosse, B. von Harling, AP in 220I. 10572

Asking for a better understanding...

II. EFT (EFfective Theories) from on-shell amplitudes

An important gain in simplicity:

 the power of being on-shell!

Ghosts, Golstones,... ($\mathrm{p}^{2} \neq 0$)
only physical states ($\mathrm{p}^{2=0}$)
ζ definite helicity ($h=\mp$)

An important gain in simplicity:

the power of being on-shell!

Ghosts, Golstones,... $\left(p^{2} \neq 0\right)$
only physical states $\left(\mathrm{p}^{2}=0\right)$
ζ definite helicity ($h=\mp$)

The SM as an EFT = EFfective Theory of Amplitudes

Expansion: 〈ij〉/^, [ij]/^

SM "Building-blocks":

At $O\left(E^{2} / \Lambda^{2}\right):$

n = number of external states
$h=$ helicity of the amplitude

$$
\mathcal{A}_{F^{3}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{V_{-}}\right)=\frac{C_{F^{3}}}{\Lambda^{2}}\langle 12\rangle\langle 23\rangle\langle 31\rangle
$$

$$
\} \begin{aligned}
& n=3 \\
& n=-3
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{F^{2} \phi^{2}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}\right)=\frac{C_{F^{2} \phi^{2}}}{\Lambda^{2}}\langle 12\rangle^{2}, \\
& \mathcal{A}_{F \psi^{2} \phi}\left(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}\right)=\frac{C_{F \psi^{2} \phi}}{\Lambda^{2}}\langle 12\rangle\langle 13\rangle, \\
& \begin{array}{c}
n=4 \\
h=-2
\end{array} \\
& \mathcal{A}_{\psi^{4}}\left(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}\right)=\left(C_{\psi^{4}}\langle 12\rangle\langle 34\rangle+C_{\psi^{4}}^{\prime}\langle 13\rangle\langle 24\rangle\right) \frac{1}{\Lambda^{2}} \\
& \mathcal{A}_{\square \phi^{4}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}\right)=\left(C_{\square \phi^{4}}\langle 12\rangle[12]+C_{\square \phi^{4}}^{\prime}\langle 13\rangle[13]\right) \frac{1}{\Lambda^{2}} \\
& \mathcal{A}_{\psi \bar{\psi} \phi^{2}}\left(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}\right)=\frac{C_{\psi \bar{\psi} \phi^{2}}}{\Lambda^{2}}\langle 13\rangle[23], \\
& \mathcal{A}_{\psi^{2} \bar{\psi}^{2}}\left(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}\right)=\frac{C_{\psi^{2} \bar{\psi}^{2}}}{\Lambda^{2}}\langle 12\rangle[34] .
\end{aligned}
$$

At $O\left(E^{2} / \Lambda^{\mathbf{2}}\right):$

n = number of external states
$h=$ helicity of the amplitude

$$
\left.\mathcal{A}_{F^{3}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{V_{-}}\right)=\frac{C_{F^{3}}}{\Lambda^{2}}\langle 12\rangle\langle 23\rangle\langle 31\rangle \quad\right\} \begin{gathered}
\mathrm{n}=3 \\
\mathrm{~h}=-3
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\mathcal{A}_{F^{2} \phi^{2}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}\right) & =\frac{C_{F^{2} \phi^{2}}}{\Lambda^{2}}\langle 12\rangle^{2}, \\
\mathcal{A}_{F \psi^{2} \phi}\left(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}\right) & =\frac{C_{F \psi^{2} \phi}}{\Lambda^{2}}\langle 12\rangle\langle 13\rangle, F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H \\
\mathcal{A}_{\psi^{4}}\left(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}\right) & =\left(C_{\psi^{4}}\langle 12\rangle\langle 34\rangle+C_{\psi^{4}}^{\prime}\langle 13\rangle\langle 24\rangle\right) \frac{1}{\Lambda^{2}} \\
\mathcal{A}_{\square \phi^{4}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}\right) & =\left(C_{\square \phi^{4}}\langle 12\rangle[12]+C_{\square \phi^{4}}^{\prime}\langle 13\rangle[13]\right) \frac{1}{\Lambda^{2}} \\
\mathcal{A}_{\psi \bar{\psi} \phi^{2}}\left(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}\right) & =\frac{C_{\psi \bar{\psi} \phi^{2}}}{\Lambda^{2}}\langle 13\rangle[23], \\
\mathcal{A}_{\psi^{2} \bar{\psi}^{2}}\left(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}\right) & =\frac{C_{\psi^{2} \bar{\psi}^{2}}^{\Lambda^{2}}}{\Lambda^{2}}\langle 12\rangle[34] .
\end{array}\right\} \begin{aligned}
& \mathrm{n}=4 \\
& \mathrm{~h}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\mathcal{A}_{\psi^{2} \phi^{3}}\left(1_{\psi}, 2_{\psi}, 3_{\phi}, 4_{\phi}, 5_{\phi}\right)=\frac{C_{\psi^{2} \phi^{3}}}{\Lambda^{2}}\langle 12\rangle & \begin{array}{c}
\mathrm{n}=5 \\
\mathrm{~h}=-\mathrm{l}
\end{array} \\
& \\
\mathcal{A}_{\phi^{6}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}, 5_{\phi}, 6_{\phi}\right)=\frac{C_{\phi^{6}}}{\Lambda^{2}} & \mathrm{n}=6 \\
\mathrm{~h}=0
\end{array}
$$

III. EFT renormalization via amplitude methods

One-loop reduction to Passarino-Veltman integrals:

One-loop reduction to Passarino-Veltman integrals:

double cut

(internal particles on-shell)

One-loop reduction to Passarino-Veltman integrals:

One-loop reduction to Passarino-Veltman integrals:

phase space integration \& sum over internal states

"Emergent" selection rules

| 505.0|844 (also by susy techniques:|4|2.7|5|)

No 4-fermion $\left(\Psi \bar{Y}^{\mu} \Psi\right)^{2}$ corrections to dipoles

$\mathcal{A}\left(1_{e}, 2_{l_{j}}, 3_{W_{-}^{a}}, 4_{H_{i}^{\dagger}}\right)$

$$
F^{\mu \nu} \bar{\psi} \sigma_{\mu \nu} \psi H
$$

"Emergent" selection rules

| 505.0| 844 (also by susy techniques:|4|2.7I5I)

No 4-fermion $\left(\Psi \bar{Y}^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
\mathcal{A}\left(1_{e}, 2_{l_{j}}, 3_{W_{-}}, 4_{H_{i}^{\dagger}}\right)
$$

$$
F^{\mu \nu} \bar{\psi} \sigma_{\mu \nu} \psi H
$$

$$
\gamma \mathcal{A}_{W H l e}=-\frac{1}{4 \pi^{3}} \int d \operatorname{LIPS} \mathcal{A}_{\text {luqe }}\left(1_{e}, 2_{l}, 3_{\bar{e}}^{\prime}, 4_{\bar{l}}^{\prime}\right) \times \mathcal{A}_{\mathrm{SM}}\left(4_{e}^{\prime}, 3_{l}^{\prime}, 3_{W^{a}}, 4_{H^{\dagger}}\right)
$$

"Emergent" selection rules

| 505.0| 844 (also by susy techniques:|4|2.7I5I)

No 4-fermion $\left(\Psi \bar{Y}^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
\begin{gathered}
\mathcal{A}\left(1_{e}, 2_{l_{l}}, 3_{W_{-}^{a}}, 4_{H_{i}^{\dagger}}\right) \\
\gamma \mathcal{A}_{W H l e}=-\frac{1}{4 \pi^{3}} \int \operatorname{dIPS} \mathcal{A}_{\text {luqe }}\left(1_{e}, 2_{l}, 3_{\bar{e}}^{\prime}, 4_{\bar{i}}^{\prime}\right) \times \mathcal{A}_{\text {SM }}\left(4_{e}^{\prime}, 3_{l}^{\prime}, 3_{W_{-}^{a}}, 4_{H^{\dagger}}\right)
\end{gathered}
$$

No $\mathbf{p}^{2} \mathbf{H}^{4}$ corrections to Hyy

 e.g. $/$$\left(H^{\dagger} D_{\mu} H\right)^{2}$

-14
\vdots
\cdots
\vdots

$$
F_{\alpha \beta} F^{\alpha \beta} h^{2}
$$

No $\mathbf{p}^{2} \mathbf{H}^{\mathbf{4}}$ corrections to Hyy

 e.g. /$\left(H^{\dagger} D_{\mu} H\right)^{2}$
${ }^{-1} 4,=N^{-1}$

$$
F_{\alpha \beta} F^{\alpha \beta} h^{2}
$$

No $\mathbf{p}^{2} \mathbf{H}^{\mathbf{4}}$ corrections to Hyy

 e.g. /
$\left(H^{\dagger} D_{\mu} H\right)^{2}$

But the on-shell methods also tell us about the non-zero result

Contributions to dipoles from Feynman approach:

very different contributions

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\gamma \mathcal{A}_{\mathbf{i}} \sim \int \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathrm{SM}}$

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\gamma \mathcal{A}_{\mathbf{i}} \sim \sum \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathrm{SM}}$

from the same SM amplitude!

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\gamma \mathcal{A}_{\mathbf{i}} \sim \int \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathbf{S M}}$

No calculation wasted in the on-shell method

$$
\mathcal{A}_{\mathrm{SM}}\left(1_{\bar{\psi}}, 2_{\bar{\psi}}, 3_{V_{-}}, 4_{H^{\dagger}}\right)
$$

from the same SM amplitude!

But there is more to say by

 angular-momentum decomposition (partial-waves)Example of dipoles:

$$
\begin{gathered}
\mathcal{A}\left(1_{e}, 2_{l}, 3_{W_{-}}, 4_{H^{\dagger}}\right)=3 e^{-i \phi} d_{01}^{J=1}(\theta) a^{J=1} \\
\text { only one partial-wave! }
\end{gathered}
$$

But there is more to say by

 angular-momentum decomposition (partial-waves)Example of dipoles:

Not needed the full SM amplitude, only:

Anomalous Dimensions as a product of partial-waves

B. vonHarling, P. Baratella, C. Fernandez, AP 20IO.I3809

$$
\gamma_{i} \sim a_{\mathrm{SM}}^{J} a_{\mathrm{BSM}}^{J}
$$

Beyond one-loop

Two-loop:
2005.06983
2005.12917
2112.12131

$+$

Two-loops for $\mu \rightarrow \mathbf{e}$

J. Elias-Miro, C. Fernandez, M. Gümüs, AP $2||2.12| 3|$
$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{R} \gamma^{\mu} \mu_{R}\right)$ affects $\mu \rightarrow \mathrm{e} \gamma$ at the two-loop level: $\hookrightarrow \mathbf{Z} \rightarrow \boldsymbol{\mu} \mathbf{e}$

product of tree-level amplitudes

Finite terms?

Difficult in general, but simplifies a lot for BSM calculations, where new physics scale $\mathbf{M} \gg$ Exp $^{\text {exp }}$

New insights from the amplitude method!

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

$\sim O\left(1 / \mathrm{M}^{4}\right)$
N.Arkani-Hamed, K. Harigaya 2106.01373

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

from on-shell methods:

L. Delle Rosse, B. von Harling, AP in 220I.I 0572

even under $\mathbf{S} \leftrightarrow \mathbf{L}$

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

Finite terms to g-2

No contribution $O\left(1 / M^{2}\right)$ to dipoles from a heavy singlet + doublet fermion:

Finite terms to g-2

L. Delle Rosse, B. von Harling, AP in 220I.I 0572

Following the same argument, more zeros can be found:

- Scalar + heavy doublet + charged fermion:

zoso zero
- Beyond g-2: Zeros in h $\gamma \gamma$

$+(\mathrm{L} \leftrightarrow \mathrm{E})$
zero

Conclusions

- The SM is an EFT: dimension-6 interactions are there waiting to be discovered (not clear though at which scale)
- EFT approach useful to understand correlations
- Nevertheless, many unexplained patterns (one-loop "zeros")

Getting on-shel!!

- Allows to construct BSM without Lagrangians
- Calculation of loop effects: Simpler with easy recycling
many "emergent" selection rules
many relations between anomalous dimensions

Conclusions

- The SM is an EFT: dimension-6 interactions are there waiting to be discovered (not clear though at which scale)
- EFT approach useful to understand correlations
- Nevertheless, many unexplained patterns (one-loop "zeros")

Getting on-shelI!

- Allows to construct BSM without Lagrangians
- Calculation of loop effects: Simpler with easy recycling
many "emergent" selection rules
many relations between anomalous dimensions

RESTRICTED AREA

MONITORED BY VIDEO CAMERA

	$\mu \rightarrow e \gamma$	$\mu \rightarrow$ eee	$\mu N \rightarrow e N$	$h \rightarrow \mu e$
$C_{D B}^{\mu e}-C_{D W}^{\mu e}$	$\begin{aligned} & \hline 951 \mathrm{TeV} \\ & (1547 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 218 \mathrm{TeV} \\ & (2183 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 208 \mathrm{TeV} \\ & (1812 \mathrm{TeV}) \end{aligned}$	
$C_{D B}^{\mu e}+C_{D W}^{\mu e}$	$\begin{aligned} & 127 \mathrm{TeV} \\ & (214 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 26 \mathrm{TeV} \\ & (309 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 24 \mathrm{TeV} \\ & (253 \mathrm{TeV}) \\ & \hline \end{aligned}$	
$C_{R}^{\mu e}$	$\begin{aligned} & 35 \mathrm{TeV} \\ & (59 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 160 \mathrm{TeV} \\ & (1602 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 225 \mathrm{TeV} \\ & (1535 \mathrm{TeV}) \end{aligned}$	
$C_{L}^{\mu e}+C_{L 3}^{\mu e}$	$\begin{aligned} & 4 \mathrm{TeV} \\ & (7 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 164 \mathrm{TeV} \\ & (1642 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 225 \mathrm{TeV} \\ & (1535 \mathrm{TeV}) \end{aligned}$	
$C_{L}^{\mu e}-C_{L 3}^{\mu e}$	$\begin{aligned} & 24 \mathrm{TeV} \\ & (41 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 35 \mathrm{TeV} \\ & (421 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 50 \mathrm{TeV} \\ & (395 \mathrm{TeV}) \end{aligned}$	
$C_{\text {LuQe }}^{\mu \mathrm{ett}}$	$\begin{aligned} & 304 \mathrm{TeV} \\ & (510 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 63 \mathrm{TeV} \\ & (735 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 59 \mathrm{TeV} \\ & (604 \mathrm{TeV}) \end{aligned}$	
$C_{L e Q u}^{\mu e t t}$	$\begin{aligned} & \hline 80 \mathrm{TeV} \\ & (141 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 14 \mathrm{TeV} \\ & (209 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{TeV} \\ & (57 \mathrm{TeV}) \end{aligned}$	
$C_{L L(R R), L R(R L)}^{\mu e e e}$		$\begin{aligned} & 207,174 \mathrm{TeV} \\ & (2070,1740 \mathrm{TeV}) \end{aligned}$		
$C_{L L, R R, L R}^{\mu e u u}$			$\begin{aligned} & \hline 352 \mathrm{TeV} \\ & (2693 \mathrm{TeV}) \end{aligned}$	
$C_{L L, R R, L R}^{\mu e d d}$			$\begin{aligned} & 376 \mathrm{TeV} \\ & (2725 \mathrm{TeV}) \end{aligned}$	
$C_{L R}^{\mu d d e}$			$\begin{aligned} & 18 \mathrm{TeV} \\ & (164 \mathrm{TeV}) \end{aligned}$	
$C_{L L, R R, L R, R L}^{\mu e \tau \tau}$		$\begin{aligned} & \hline 14,16,14,16 \mathrm{TeV} \\ & (174,194,174,194 \mathrm{TeV}) \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \mathrm{TeV} \\ & (200 \mathrm{TeV}) \end{aligned}$	
$C_{L L 3}^{\mu e \tau \tau}$		$\begin{aligned} & 20 \mathrm{TeV} \\ & (247 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 55 \mathrm{TeV} \\ & (476 \mathrm{TeV}) \end{aligned}$	
$C_{L L, R R, L R, R L}^{\mu e t t}$	$\begin{aligned} & 122 \mathrm{TeV} \\ & (214 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 21 \mathrm{TeV} \\ & (317 \mathrm{TeV}) \end{aligned}$	$22,32,32,22 \mathrm{TeV}$ $(200,290,290,200 \mathrm{TeV})$	
$C_{L L 3}^{\mu e t t}$	$\begin{aligned} & 230 \mathrm{TeV} \\ & (401 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & \hline 41 \mathrm{TeV} \\ & (592 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 100 \mathrm{TeV} \\ & (851 \mathrm{TeV}) \end{aligned}$	
$C_{L L, R R, L R, R L}^{\mu e b b}$		$\begin{aligned} & 14,16,14,16 \mathrm{TeV} \\ & (174,194,174,194 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 22 \mathrm{TeV} \\ & (200 \mathrm{TeV}) \end{aligned}$	
$C_{y}^{\mu e}$	$\begin{aligned} & 4 \mathrm{TeV} \\ & (6 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{TeV} \\ & (9 \mathrm{TeV}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{TeV} \\ & (7 \mathrm{TeV}) \end{aligned}$	0.3 TeV

$\left|d_{e}\right|<1.1 \cdot 10^{-29} \mathrm{e} \cdot \mathrm{cm}$.

tree-level
$C_{e W}$ $5.5 \times 10^{-5} y_{e} g$ $C_{e B}$ $5.5 \times 10^{-5} y_{e} g^{\prime}$ one-loop $C_{\text {luqe }}$ $1.0 \times 10^{-3} y_{e} y_{t}$ $C_{W \widetilde{W}}$ $4.7 \times 10^{-3} g^{2}$ $C_{B \widetilde{B}}$ $5.2 \times 10^{-3} g^{\prime 2}$ $C_{W \widetilde{B}}$ $2.4 \times 10^{-3} g g^{\prime}$ $C_{\widetilde{W}}$ $6.4 \times 10^{-2} g^{3}$

$C_{l e q u}$	$3.8 \times 10^{-2} y_{e} y_{t}$
$C_{\tau W}$	$260 y_{\tau} g$
$C_{\tau B}$	$380 y_{\tau} g^{\prime}$
$C_{t W}$	$6.9 \times 10^{-3} y_{t} g$
$C_{t B}$	$1.2 \times 10^{-2} y_{t} g^{\prime}$
$C_{b W}$	$64 y_{b} g$
$C_{b B}$	$47 y_{b} g^{\prime}$
$C_{l e \bar{d} \bar{q}}$	$10 y_{e} y_{t}\left(y_{t} / y_{b}\right)$
$C_{l e \bar{e}^{-} \bar{l}^{\prime}}$	$0.63 y_{e} y_{t}\left(y_{t} / y_{\tau}\right)$

two-loops finite

$C_{y_{e}}$	$14 y_{e} \lambda_{h}$
$C_{y_{t}}$	$14 y_{t} \lambda_{h}$
$C_{y_{b}}$	$2.9 \times 10^{3} y_{b} \lambda_{h}$
$C_{y_{\tau}}$	$3.4 \times 10^{3} y_{\tau} \lambda_{h}$

