Search for the Critical Point and the **Onset of Deconfinement**

An Overview on the Experimental Status

7th International Workshop on CPOD 2011 Critical Point and **Onset of Deconfinement** Wuhan, China 7—11 Nov. 2011

Christoph Blume University of Frankfurt

GOETHE

The QCD Phase Diagram

Topic of CPOD

Part of phase diagram with $\mu_{\rm B} > 0$ $\mu_{\rm B} = 0$: LHC physics

Questions to experiments

- 1) Is it possible to locate the onset of deconfinement?
- Is there any evidence for a 1st order phase transition ?
- 3) Can one find any indication for a possible critical point ?

Broad experimental program

Past: SPS (and AGS) Present: RHIC and SPS

Future: FAIR and NICA

The QCD Phase Diagram Experimental Access

Control parameter: $\sqrt{s_{NN}}$

Allows to scan different regions of phase diagram

System freezes out at different positions along freeze-out curve

Trajectory might cross critical area

Christoph Blume

CPOD 2011, Wuhan

The QCD Phase Diagram Chemical Freeze-Out

Experimental Data Beam Energy Scan at the CERN-SPS

Energy scan program

Pb+Pb reactions

Year	1998 1999	2000	2002
√ <i>s</i> _{NN} (GeV)	8.8	12.3 17.3	6.3 7.6
E _{beam} (AGeV)	40	80 158	20 30

Covers ~250 MeV < $\mu_{\rm B}$ < ~470 MeV

Experiments:

Fixed target setup

<u>NA49 (all energies)</u> NA45 (40, 80, 158 *A*GeV) NA57 (40, 158 *A*GeV)

Experimental Access Beam Energy Scan (BES) at RHIC

BES program of STAR

Au+Au reactions

Year	2009	2010	2011	Planned
√s _{NN} (GeV)	9.2	7.7 11.5 39.0	19.6 27.0	5.5 15.5?

Covers ~20 MeV < $\mu_{\rm B}$ < ~400 MeV

Collider geometry

 \Rightarrow Acceptance independent on $\sqrt{s_{_{\rm NN}}}$

Christoph Blume

Search for the Onset of Deconfinement

Onset of Deconfinement Observables

Sensitivity to EOS

 $HG \rightarrow QGP$: rapid change of the number of degrees of freedom

Flow observables

Radial flow: p_t spectra

Directed flow: collapse of proton v_1

Elliptic flow: disappearance of partonic collectivity (NCQ-scaling)?

HBT radii

$\sqrt{s_{NN}}$ dependence of particle production

Statistical model of early stage M. Gaździcki and M.I. Gorenstein, APPB30, 2705 (1999)

Onset of Deconfinement NA49 Results

CPOD 2011, Wuhan

Onset of Deconfinement Kaon to Pion Ratios

Christoph Blume

CPOD 2011, Wuhan

Onset of Deconfinement Strange Baryon to Pion Ratios

Onset of Deconfinement Transverse Momentum Spectra: $\langle m_t \rangle - m_0$

Onset of Deconfinement Kinetic Freeze-Out Parameter

Blast wave fits: T_{kin} , $\langle \beta_T \rangle$

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$$

E. Schnedermann and U. Heinz, PRC50, 1675 (1994).

 T_{kin} < T_{ch} for $√s_{NN}$ > 10 GeV Difference increases with increasing energy (drop of T_{kin}) → more time for cooling of system

Continuous increase of $\langle \beta_T \rangle$

Steep increase at low energies Moderate increase at higher energies

Onset of Deconfinement Directed Flow of (Anti-)Protons

Proton v_1 at mid-rapidity

Slope changes sign at $\sqrt{s_{NN}} = 8-10 \text{GeV}$

Antiproton v_1

Different $\sqrt{s_{NN}}$ dependence v_1 drops towards low energies

3rd flow component?

Sign of 1st order phase transition

Christoph Blume

Onset of Deconfinement Elliptic Flow: Particle - Antiparticle

v_2 (particle) – v_2 (antiparticle)

Difference increases towards low $\sqrt{s_{NN}}$

Effect stronger for baryons (p, Λ) than for mesons (π , K)

Continuous evolution

Absorption effects Effect of high net-baryon density ... ?

Onset of Deconfinement Elliptic Flow: Disappearance of partonic collectivity ?

Onset of Deconfinement Azimuthal HBT

HBT radii vs. reaction plane

Freeze-out eccentricity:

$$\epsilon_f = \frac{R_y^2 - R_x^2}{R_y^2 + R_x^2}$$

In-plane pressure: Initial eccentricity \Rightarrow spherical shape

Sensitive to EOS (1st order PT)

Indication for non-monotonic behavior ?

How about integrated v_2 vs $\sqrt{s_{NN}}$?

Search for the Critical Point

Critical Point Observables

Critical opalescence

Correlation lengths and susceptibilities diverge

Heavy ion reactions

System size limited \Rightarrow critical region Correlation length $\xi \approx$ radius of system

Enhanced fluctuations

Multiplicity Average *p*_t Particle ratios

Conserved quantities

Strangeness S Baryon number B Charge Q

Higher moments more sensitive

Christoph Blume

Critical Point Average p_t and Multiplicity Fluctuations

Average p_t fluctuations Quantified by Φ_{pt}

$$\Phi_x \equiv \sqrt{\frac{\langle Z_x^2 \rangle}{\langle N \rangle}} - \sqrt{\overline{z_x^2}} \quad Z_x \equiv \sum_{i=1}^{N_j} (x_i - \overline{x}) \qquad z_x \equiv x - \overline{x}$$

Multiplicity fluctuations

Quantified by scaled variance

 $\omega = \frac{Var(n_{-})}{<n_{-}>} = \frac{<n_{-}^2 > - <n_{-}>^2}{<n_{-}>}$

No $\sqrt{s_{NN}}$ dependence seen

Critical point expectation

 $\mu_{\rm B}$ from stat. model fit: F. Becattini et al., PRC73, 044905 (2006) Position of critical point: Z. Fodor and S. Katz JHEP 0404, 050 (2004)

Amplitude of fluct. : M. Stephanov et al. PRD60, 114028 (1999) Width of critical region: Y. Hatta and T. Ikeda, PRD67, 014028 (2003)

NA49, PRC79, 044904 (2009)

Christoph Blume

Critical Point Particle Ratio Fluctuations

Sensitivity to CP?

No evidence for non-monotonic behavior in energy dependence

$\textbf{Comparison NA49} \leftrightarrow \textbf{STAR}$

Good agreement for p/ π Deviations for K/ π + K/p at lowest $\sqrt{s_{NN}}$ NA49, PRC83, 061902 (2011) NA49, PRC79, 044910 (2009) STAR, PRL103, 092301 (2009)

Difficult to resolve due to different acceptances: 30A GeV

Christoph Blume

CPOD 2011, Wuhan

Critical Point Higher Moments of $\langle p_t \rangle$ -Fluctuations

3rd moments as a function of $\sqrt{s_{NN}}$ $\Phi_{p_t}^{(n)} = \left(\frac{\langle Z_{p_t}^2 \rangle}{\langle N \rangle}\right)^{1/n} - \left(\bar{z}_{p_t}^n\right)^{1/n}$ $z_{p_t} = p_t - \bar{p}_t \quad Z_{p_t} = \sum_{i=1}^N (p_t - \bar{p}_t)$ **Sensitive to higher power of correlation length \boldsymbol{\xi}** E. g. $\langle N^4 \rangle \propto \boldsymbol{\xi}^7$ compared to $\langle N^2 \rangle \propto \boldsymbol{\xi}^2$ S. Mrówczynski PLB **465**, 8 (1999) M.A. Stephanov PRL **102**, 032301 (2009)

Critical Point Higher Moments of Net-Proton Fluctuations

Baryon number fluctuations

Conserved quantity

Higher moments more sensitive to divergent correlation lengths Measure of non-Gaussian behavior

Connected to susceptibilities $S\sigma = \chi_{\rm B}^3/\chi_{\rm B}^2$ $K\sigma^2 = \chi_{\rm B}^4/\chi_{\rm B}^2$ Volume effects cancel

Smooth evolution Departs from HRG at low $\sqrt{s_{NN}}$

STAR, PRL105, 022302 (2010)

Christoph Blume

Critical Point System Size Dependence of Multiplicity Fluctuations

Multiplicity fluctuations

Quantified by scaled variance

 $\omega = \frac{Var(n_{-})}{<n_{-}>} = \frac{<n_{-}^2> - <n_{-}>^2}{<n_{-}>}$

Clear change with *N***_w seen** Maximum for C+C and Si+Si

Connection to CP possible?

Critical Point Di-Pion (Sigma) Intermittency

π⁺**π**⁻ Pairs above di-pion threshold

 $(2m_{\pi} + \epsilon_1)^2 \le (p_{\pi^+} + p_{\pi^-})^2 \le (2m_{\pi} + \epsilon_2)^2$

Factorial moments $F_2(M)$ *M*: Number of bins in p_t

Subtract mixed event background $\Rightarrow \Delta F_2(M)$

Search for power law behavior $\Delta F_2(M) \sim (M^2) \Phi^2$ Φ_2 : critical exponent

 $\Phi_2 > 0$ for Si+Si Coulomb effects become an issue for larger systems

Outlook NA61 / SHINE at the CERN-SPS

Upgrade of NA49 setup

Faster readout Projectile Spectator Detector (PSD) Secondary ion beam line (fragment separator)

Program

2D scan: energy + system size

Already done: p+p energy scan, p+C Start with Be+Be this year

Outlook CBM at FAIR

Compressed Baryonic Matter

Fixed target experiment at SIS-100/300 lon beams with highest luminosity 10^{9} /s Beam energies 10 - 45 AGeVBegin 2019

Program

Rare probes: J/ψ, open charm Multi-strange baryons Di-leptons, photons All hadronic observables

Startup with SIS-100

HADES @ FAIR $E_{\text{beam}} < 10 \text{ AGeV}$

Christoph Blume

Outlook NICA at JINR (Dubna)

NICA: Nuclotron based Ion Collider fAcility

Collider with $\sqrt{s_{NN}} = 4-11$ GeV Luminosity ~ 10^{27} cm⁻²s⁻¹ for ¹⁷⁹Au⁷⁹⁺ Begin 2017

Fixed target @ Nuclotron (BM@N) (joint GSI-JINR effort) $\sqrt{s_{NN}} \approx 3.5$ GeV, begin 2015

Program

Systems with highest baryon density Critical point Quarkyonic phase Chiral symmetry restoration

Conclusions

Already a wealth of data on the market

Energy scan at the CERN-SPS (NA49) Beam Energy Scan (BES) at RHIC (STAR) Good agreement between experiments (except K/ π and K/p fluct. at low $\sqrt{s_{NN}}$)

Onset of deconfinement

Many interesting and non-trivial structures K^+/π^+ ratios, radial flow, directed flow of (anti)protons Onset of partonic collectivity observable?

Search for the critical point

Many promising ideas being tested Higher moments, conserved quantities (e.g. net-protons) No clear evidence yet

Much more to come in the future

BES (STAR) and CERN (NA61) FAIR (CBM) and NICA (MPD)

Many Thanks!

M. Bleicher, F. Diakonos, M. Gaździcki, B. Mohanty, H.G. Ritter, P. Seyboth, N. Xu, ...

CPOD 2011, Wuhan

Onset of Deconfinement Model Comparisons to p_t Spectra

Transport models

HSD, UrQMD1.6 Do not match data (except UrQMD2.3)

Hydro models

Structure consistent with change of EOS 1st order phase transition

But:

Strong influence of freeze-out description Difficult to establish unique connection

Onset of Deconfinement Elliptic Flow: ϕ Meson

Md. Nasim, SQM11

Onset of Deconfinement Kinetic Freeze-Out $\rightarrow p_t$ -Spectra

 p_t -Spectra Sensitive to radial flow \rightarrow mass dependence

Blast wave fits: T_{kin} , $\langle \beta_T \rangle$

 $\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$

E. Schnedermann and U. Heinz, PRC50, 1675 (1994).

Resonance feed down usually ignored !

Outlook NA61 / SHINE at the CERN-SPS

Pilot data 2007: p+C at 31 GeV/c Comparison to FLUKA2008

The H2 Beam Line as Ion Fragment Separator

A. Aduszkiewicz, SQM11

The QCD Phase Diagram High Baryon Density

Net baryon density

Reaches maximum in interesting regions of $\sqrt{s_{\rm NN}}$

Critical Point Theoretical Predictions

Critical region

Larger area in $T - \mu_B$ plane

Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003)

Focusing effect

Proximity of critical point might influence isentropic trajectories $(n_{\rm B}/s = {\rm const.})$

Askawa et al., Phys. Rev. Lett. 101, 122302 (2008)

Christoph Blume

Christoph Blume

CPOD 2011, Wuhan

The correlator $\Delta F_2(M)$ for 3 considered systems at 158A GeV

