Baryon & Electric Charge Fluctuations Near Chiral Crossover

Vladimir Skokov

CPOD 2011

VSKOKOV@BNL.GOV

B AND Q FLUCTUATIONS NEAR CHIRAL CROSSOVER

CPOD 2011 1/42

• Transition close to freeze-out $\rightarrow \chi_6^B < 0$ and $\chi_6^Q < 0$ or smaller than HRG values

• Transition close to freeze-out $\rightarrow \chi_6^B < 0$ and $\chi_6^Q < 0$ or smaller than HRG values

• $\chi_6^B < 0$ and $\chi_6^Q < 0 \hookrightarrow$ transition close to freeze-out.

Non-equilibrium effects, conservation laws, initial state fluctuations (V. Koch's talk)

• Transition close to freeze-out $\rightarrow \chi_6^B < 0$ and $\chi_6^Q < 0$ or smaller than HRG values

• $\chi_6^B < 0$ and $\chi_6^Q < 0 \rightarrow$ transition close to freeze-out.

Non-equilibrium effects, conservation laws, initial state fluctuations (V. Koch's talk)

• Do we see it in experiment? Yes...

• Transition close to freeze-out $\rightarrow \chi_6^B < 0$ and $\chi_6^Q < 0$ or smaller than HRG values

• $\chi_6^B < 0$ and $\chi_6^Q < 0 \rightarrow$ transition close to freeze-out.

Non-equilibrium effects, conservation laws, initial state fluctuations (V. Koch's talk)

• Do we see it in experiment? Yes...

Transition close to freeze-out → χ₆^B < 0 and χ₆^Q < 0 or smaller than HRG values
χ₆^B < 0 and χ₆^Q < 0 → transition close to freeze-out. Non-equilibrium effects, conservation laws, limited acceptance effect (V. Koch's talk)

- Do we see it in experiment? Yes...
- Can we interpret it? Presently No
- Presently, No...

```
L. Chen, BNL workshop 2011, month ago:
```


Not QCD phase diagram

Structure of the phase diagram

- crossover at small μ_B, underlying O(4) universality class
- (Expected) critical end point, 3d Ising model universality class

(日)

• (Expected) first-order transition

CURVATURE OF TRANSITION LINE AND FREEZE-OUT

 LGT QCD: curvature of crossover line μ_B

$$T/T_c \approx 1 - 0.0066 \left(\frac{\mu_B}{T}\right)^2$$

• HRG model: freeze-out curve

 $T/T_c \approx 1 - \mathbf{0.023}(\mu_B/T)^2$

But:

- only curvature. Lattice: μ².
 FO: error bars
- freeze-out line at high μ_B: can be refined from LGT calculations (F. Karsch talk)

Hadron Resonance Gas (HRG) model:

A. Andronic et al. HRG including heavy resonances, excluded volume corrections and etc. Particle yields are well described by HRG model Where is the transition?

WHERE IS TRANSITION?

Can we learn something beyond this with fluctuations of baryon/electric charge?

- 1st order phase transition?
- critical end point?
- proximity of freeze-out and crossover line? this talk

Experiment: $\mathcal{P}(N) \rightsquigarrow \langle N^k \rangle = \sum_N N^k P(N) \rightsquigarrow \text{ cumulants}$

Theory: $p(T,\mu) \rightsquigarrow \partial^n / \partial \mu^n \ p(T,\mu) \rightsquigarrow \chi_n \cdot (VT^3) \equiv \text{cumulants}$

VSkokov@bnl.gov

HRG
$$(\mu_S = \mu_Q = 0)$$
:

Baryon number fluctuations:

• $T \ll m_p \rightarrow$ Boltzmann approximation: $p/T^4 = \sum_i f(m_i/T) \cosh(\mu_B/T) + g(T)$

• $\chi_{2n} \propto \cosh(\mu_B/T) \quad \chi_{2n+1} \propto \sinh(\mu_B/T)$

•
$$\chi_{2n}/\chi_2 = 1$$
 $\chi_{2n+1}/\chi_1 = 1$

• $\chi_{2n} > 0$

• Effect of statistics $\chi_6/\chi_2 = 0.95$ at $\sqrt{s} = 10$ GeV

• Electric charge fluctuations: ratios > 1 due to Bose statistics of pions and multiple charged hadrons

Properties:

- At CEP: for $n \ge 2$, $\chi_n \propto \xi^{n\beta\delta/\nu-3} \approx \xi^{5n/2-3}$, e.g. $\chi_4 \sim \xi^7$ (M. Stephanov '09)
- Diverging χ₂ can signal spinodal decomposition of a non-equilibrium 1st order transition (C. Sasaki et. al. '07)

イロト 人間 ト イヨト イヨト

• Negative values of high order cumulants (χ_6^B and χ_6^Q) close to crossover even at $\mu_B = 0$ (B. Friman et. al. '11)

Why negative?

Why sixth order?

ヘロト 人間 とくほど 人間と

WHY NEGATIVE?

Pressure (Borsanyi et al., 2010):

• Close to transition scaling field $a = T - T_{trans.} + \kappa \mu_B^2$ (F. Karsch and K. Redlich)

• At
$$\mu_B = 0$$
: $\partial^2 / \partial \mu_B^2 \Big|_{\mu_B = 0} \sim \partial / \partial T$

• $\exists n \text{ such that } \frac{\partial^n(p/T^4)}{\partial T^n} < 0 \quad \rightsquigarrow \chi^B_{2n} < 0.$

Why sixth order?

ヘロンス 留 とく ほとく ほと

Zero baryon chemical potential $\mu_B = 0$

•
$$\partial^2/\partial\mu_B^2\Big|_{\mu_B=0}\sim \partial/\partial T$$

•
$$\chi_2^B(\mu_B = 0) \sim (\partial^2/\partial\mu_B^2)p \sim (\partial/\partial T)p \sim s$$

Thus, $\chi_2^B(\mu_B = 0) > 0$

•
$$\chi_3^B = 0$$
 at $\mu_B = 0$

(日) (間) (目) (日)

Zero baryon chemical potential $\mu_B = 0$

•
$$\partial^2 / \partial \mu_B^2 \Big|_{\mu_B = 0} \sim \partial / \partial T$$

•
$$\chi_4^B(\mu_B=0) \sim c_V$$

 c_V is positive for thermodynamically stable systems $\rightarrow \chi_4^B(\mu_B = 0) > 0$

•
$$\chi_5^B = 0$$
 at $\mu_B = 0$

Zero baryon chemical potential $\mu_B = 0$

Sign of χ^B₆ is not constraint.
 Sign change: Sixth order cumulant is the lowest possible one.

• Sign of
$$\chi_6^B \sim \frac{\partial^2 \chi_B^4}{\partial \mu^2} \sim \frac{\partial \chi_B^4}{\partial T} \sim \frac{\partial c_V}{\partial T}$$

 $\chi_6^B \sim \frac{\partial c_V}{\partial T}$

 Not universal, but general argument: energy → phase change, not → ΔT: c_V has peak structure on transition ~> negative χ^B₆

・ ロ ト ス 雪 ト ス 目 ト ス 目 ト

Temperature dependence of $\chi_4^B(c_V)$ in models

1.5

PQM QM

1.5

PQM

Results from O(4) scaling

Based on: J. Engels, F. Karsch, arXiv:1105.0584 and B. Friman et. al., arXiv:1103.3511

O(4) model singular part of $p/T^4 \propto -f(a,h)/T^4$, $h \propto m_q$

5

ヘロト 人間ト 人造ト 人造ト

CROSSOVER VS CEP

CEP

- **Good:** $\chi_4 \sim \xi^7 \rightsquigarrow$ strong signal
- **Bad:** CEP is off from FO line → signal may be washed out by
- **Bad:** low energy of collision → conservation laws dominate the scene (M. Nahrang's talk)

< □ > < 同 > < 回 > < 回 > .

- **Bad:** Signal is not strong, but independent on ξ
- Good: FO line and crossover are close to each other
- Good: high energy of collision → reasonable cuts remove impact from cons. laws

Lattice QCD restrictions

- continuum limit for cumulants
- non-zero chemical potential

QCD inspired model

- O(4) symmetry in limit of vanishing mass for light quarks
- simulation of confinement properties (ratios of cumulants are sensitive to degrees of freedom)

• accounts for universal critical behaviour near chiral transition

• reproduces scaling properties and critical exponents (Berges '00, B. Stokic et. al. '10)

• respects symmetries (Goldstone theorem fulfilled, second-order phase transition in *O*(4) model)

ヘロト 人間 とくほとくほと

Phase diagram in FRG PQM

VSKOKOV@BNL.GOV

CPOD 2011 22 / 42

ヘロト 人間ト 人造ト 人造ト

- Negative also at $\mu_q = 0$
- Temperature range of negative cumulants correlates with crossover temperature
- Many other constraints from O(4) scaling: B. Friman et. al. '11

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト

HIGH-ORDER BARYON CUMULANT

Temperature interval of negative cumulants closest to hadronic phase:

- Negative values (in broken phase!) of high-order cumulants: indicates proximity of freeze-out to crossover
- Accessible experimentally

< □ > < 同 > < 回 > < 回 >

Electric charge fluctuations

Electric charge fluctuations follow similar pattern as baryon fluctuations

< □ > < 同 > < 回 > < 回 >

ヘロト 人間ト 人造ト 人造ト

(日) (間) (目) (日)

(日) (間) (目) (日)

- Models are unable relate FO line and PT line. $\chi_6/\chi_2(\sqrt{s}) = f(\sqrt{s}) = ?$
- Low energies: cumulants might be affected by conservation laws

ヘロト 人間ト 人造ト 人造ト

Hadron resonance gas with excluded volume $p(T, \mu) = \sum_{i} p_i(T, \mu_i - vp)$ $\mu_{\rm B}=0$ HRG with excluded volume 0.8 v=0 $v=0.1 \text{ fm}^{3}$ v=0.5 fm³ 0.6 $v=1 \text{ fm}^3$ 0.40.2 100 150 200 50 T, MeV

A. Friesen

Pressure bends...

Hadron resonance gas with excluded volume

A. Friesen

A. Andronic: FO fit with $v = 0.45 \text{ fm}^3$

◆ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト

Thank you for attention

Collaborators: B. Friman, F. Karsch and K. Redlich

VSkokov@bnl.gov

B AND Q FLUCTUATIONS NEAR CHIRAL CROSSOVER

CPOD 2011 32/42

V.S., B. Friman and K. Redlich PRC'11

- χ_2^q : non-monotonic structure (diverges at CEP)
- χ_4^q : negative for nonzero μ_q

<ロト < 置 > < 国 > < 国 > 、

• Fluctuations of net-quark number χ_n^q and net-baryon charge χ_n^B

$$\chi_n^q = \frac{\partial^n (p/T^4)}{\partial (\mu_q/T)^n} \quad | \quad \chi_n^B = \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} = \left(\frac{1}{3}\right)^n \chi_n^q$$

• Fluctuations of electric charge χ_n^Q

$$\chi_n^Q = \frac{\partial^n (p/T^4)}{\partial (\mu_Q/T)^n}$$

• Fluctuations of net-strange number...

COMPARISON OF THE HRG MODEL WITH EXPERIMENT

F. Karsch and K. Redlich, '10

◆ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト

KURTOSIS OF NET-QUARK NUMBER DENSITY

Kurtosis $R_{4,2}^q = \frac{\chi_4^q}{\chi_2^q} = \frac{\langle (\delta N_q)^4 \rangle}{\langle (\delta N_q)^2 \rangle} - 3 \langle (\delta N_q)^2 \rangle$ (S. Ejiri, F. Karsch and K. Redlich '05): quark content of effective degrees of freedom that carry baryon number

- Low temperature phase: dominance of effective three-quark states: $P_{\text{baryons}}/T^4 \approx \sum_i F(m_i/T) \cosh(3\mu_q/T)$ $\rightsquigarrow R_{4,2}^q = 9$
- **High-temperature phase:** $P_{q\bar{q}}/T^4 \approx N_f N_c \left[\frac{1}{12\pi^2} \left(\frac{\mu_q}{T} \right)^4 + \frac{1}{6} \left(\frac{\mu_q}{T} \right)^2 + \frac{7\pi^2}{180} \right]$ $\rightsquigarrow R_{4,2}^q = (6/\pi^2) \approx 1$
- PQM: statistical confinement
- $m_{\pi} = 0, \mu_q \neq 0$: kurtosis diverges $R_{4,2}^q \sim \left(\frac{\mu_q}{T}\right)^4 / t^{2+\alpha}$ ($t \propto$ distance to chiral critical line)

SIGN OF KURTOSIS

M. Stephanov '11: 3d Ising universality class \rightsquigarrow kurtosis is negative close to CEP

< □ > < 同 > < 回 > < 回 >

Does negative kurtosis signal CEP?

Negative kurtosis is necessary, but not sufficient condition of CEP.

$$CEP \rightarrow R^B_{4,2} < 0, \text{ but } R^B_{4,2} < 0 \twoheadrightarrow CEP$$

MODELING QCD: BEYOND MEAN-FIELD APPROXIMATION

Functional Renormalization Group

- $p(T, \mu, k)$, *k* defines IR cut off $\rightarrow p(T, \mu, k)$ includes modes with momentum > *k*.
- Functional renormalization group equation (exact and general):

 $p(T, \mu, \mathbf{k} - d\mathbf{k}) = p(T, \mu, \mathbf{k}) +$ Exact FRG flow

- Iterating towards $k \to 0$: $p(T, \mu, k = 0)$ includes all momentum modes
- Exact FRG is useless, approximations (leading order in gradient expansion):

$$p(T, \mu, k - dk) = p(T, \mu, k) +$$
Approximate FRG flow

FRG review: J. Berges, N. Tetradis & C. Wetterich, Phys.Rept.363:223-386, '02 FRG formulation of PQM model: V. S., B. Stokic, B. Friman & K. Redlich, PRC, '10

FUNCTIONAL RENORMALIZATION GROUP

The general flow equation for the effective action

$$\partial_k \Gamma_k[\Phi,\psi] = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_{kB} \left(\Gamma_k^{(2,0)}[\Phi,\psi] + R_{kB} \right)^{-1} \right\} - \operatorname{Tr} \left\{ \partial_k R_{kF} \left(\Gamma_k^{(0,2)}[\Phi,\psi] + R_{kF} \right)^{-1} \right\}$$

The flow equation for the PQM model

$$\begin{split} \partial_k \Omega(k,\rho &\equiv \frac{1}{2} [\sigma^2 + \pi^2]) = \frac{k^4}{12\pi^2} \left\{ \frac{3}{E_\pi} \left[1 + 2n_B(E_\pi;T) \right] + \frac{1}{E_\sigma} \left[1 + 2n_B(E_\sigma;T) \right] - \frac{4N_f N_c}{E_q} \left[1 - N(\ell,\ell^*;T,\mu_q) - \bar{N}(\ell,\ell^*;T,\mu_q) \right] \right\} \end{split}$$

 $n_B(E;T)$ is the boson distribution functions $N(\ell, \ell^*; T, \mu)$ are fermion distribution function

 $N(\ell, \ell^*; T, \mu_q)$ are fermion distribution function modified owing to coupling to gluons E_{σ} and E_{π} are the functions of k, $\partial\Omega/\partial\rho$ and $\rho\partial^2\Omega/\partial\rho^2$ $E_q = \sqrt{k^2 + 2g\rho}$

FRG defines $\Omega(k, \rho; T, \mu_Q, \mu_B)$. **Physically relevant quantity** is the thermodynamical potential $\overline{\Omega}(T, \mu_Q, \mu_B) \equiv \Omega(k \to 0, \rho \to \rho_0; T, \mu_Q, \mu_B)$, where ρ_0 is the minimum of Ω .

L. Chen, one month ago, BNL workshop 2011:

Red points: χ_4/χ_2 . Reminder: χ_4/χ_2 is not influenced by O(4) criticality **Blue points:** χ_6/χ_2 . Not negative, but **suppressed**!

L. Chen, one month ago, BNL workshop 2011:

Red points: χ_4/χ_2 . Reminder: χ_4/χ_2 is not influenced by O(4) criticality **Red points:** χ_6/χ_2 . Not negative, but **suppressed**! **Centrality dependence**?

<ロト < 聞 > < 目 > < 目 > -