Suppression of the Repulsive Force in Nuclear Interactions near the Chiral Phase Transition

Chihiro Sasaki Frankfurt Institute for Advanced Studies

References

- C.S., H.K.Lee, W.-G.Paeng, M.Rho, Phys. Rev. D84, 034011 (2011).
- W.-G.Paeng, H.K.Lee, M.Rho, C.S., [arXiv:1109.5431 [hep-ph]].

Origin of hadron masses?

ullet spontaneous chiral symmetry breaking \cdots dynamics of strong int., Λ_{QCD}

• scale symmetry breaking $(x^{\mu} \to e^{\tau} x^{\mu}) \cdots$ emergence of a scale in QCD

$$\partial_{\mu}J^{\mu} = T^{\mu}_{\mu} = -\left(\frac{11}{24}N_{c} - \frac{1}{12}N_{f}\right)\frac{\alpha_{s}}{\pi}G_{\mu\nu}G^{\mu\nu} + \sum_{f}m_{f}\bar{q}_{f}q_{f}$$

ullet hadron masses: not only from $\langle ar q q
angle$ but also other condensates

$$m_H = \mathcal{F}(m_{\text{SCSB}}, m_{\text{non-SCSB}})$$

Baryons near chiral symmetry restoration

- m_N at χ -symmetry restoration? · · · dynamical origin of nucleon mass?
 - standard assignment: D χ SB generates entire masses. $m_N \stackrel{\sigma \longrightarrow 0}{\longrightarrow} 0$

$$\psi_L \to L \, \psi_L \,, \quad \psi_R \to R \, \psi_R \quad \Rightarrow \text{ no } \bar{\psi} \psi$$

— mirror assignment: D χ SB generates mass difference of parity doublers.

$$m_{N_+} \stackrel{\sigma \to 0}{\longrightarrow} m_{N_-} = m_0 \neq 0$$
 [Detar-Kunihiro (89)]

$$\psi_{1L} \to L \, \psi_{1L} \,, \quad \psi_{1R} \to R \, \psi_{1R} \,, \quad \psi_{2L} \to R \, \psi_{2L} \,, \quad \psi_{2R} \to L \, \psi_{2R}$$

$$\mathcal{L}_{m} = m_{0} \left(\bar{\psi}_{2} \gamma_{5} \psi_{1} - \bar{\psi}_{1} \gamma_{5} \psi_{2} \right) \Rightarrow m_{N_{\pm}} = \frac{1}{2} \left| \sqrt{c_{1} \sigma^{2} + 4 m_{0}^{2}} \mp c_{2} \sigma \right|$$

- how large is m_0 ?
 - vacuum: 300 MeV from $N^* \to N\pi$ [DeTar-Kunihiro (89), Nemoto et al. (98)]
 - nuclear matter: $800 \stackrel{\text{4quark}}{\Rightarrow} 450 \text{ MeV}$ [Zschiesche et al. (07), Gallas et al. (09)]
 - -finite $T\simeq T_{\rm ch}$: 200 MeV from $\langle G_{\mu\nu}G^{\mu\nu}\rangle_T$ [CS-Lee-Paeng-Rho (11)]

Role of scalar mesons

- stable nuclear matter: a scalar boson in Walecka model, "modified" σ model
- nonlinear realization of chiral symmetry
 d.o.f.: pions, NO scalar mesons loops: chiral perturbation theory
- near χ SR: scalar meson gets lighter \Rightarrow O(4) multiplet with pions $(s, \vec{\pi})$
- from linear to non-linear basis, or the other way around

$$P \rightarrow Q$$
: chiral transformation

$$\Phi = \sigma + i\vec{\tau} \cdot \vec{\pi} \qquad f_{\pi} = \sqrt{\sigma^2 + \vec{\pi}^2}$$

$$= (\sigma_0 + \tilde{\sigma})U , \quad U = e^{-i\vec{\tau} \cdot \vec{\pi}/f_{\pi}}$$

$$\Rightarrow \mathcal{L} = \frac{f_{\pi}^2}{4} \text{tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right]$$

- two-component gluon condensate [Miransky-Gsynin (89), Lee-Rho (09)]
 - trace anomaly in QCD

$$\partial_{\mu}J^{\mu}=T^{\mu}_{\mu}\propto \langle H|G^{2}|H\rangle\,,\quad H={
m quarkonium,\ glueballs,\ etc.}$$

decomposition

$$\langle H|G^2|H\rangle = \langle G^2\rangle_{\mathrm{soft}} + \langle G^2\rangle_{\mathrm{hard}}$$
 $\chi \mathrm{SB}, N_c N_f = \mathrm{CSB}, N_c^2$

- from Lattice EoS: gluon decondensation at finite T [Miller (07)]

$$\langle G^2 \rangle_{T_{\mathrm{chiral}}} \simeq \frac{1}{2} \langle G^2 \rangle_{T=0} \quad \Rightarrow \quad \mathrm{melting} \, \langle G^2 \rangle_{\mathrm{soft}}$$

soft and hard dilatons

$$V(\chi) = V(\chi_s) + V(\chi_h), \quad V_i = \frac{1}{4}B_i \left(\frac{\chi_i}{F_{\chi_i}}\right)^4 \left[\ln\left(\frac{\chi_i}{F_{\chi_i}}\right)^4 - 1\right]$$

role of hard dilaton

origin of
$$m_0$$
, bag "function": $B(T_{\rm chiral}) \simeq \frac{1}{2}B(T=0)$

- transmutation of a scalar from NLSM to LSM [Beane-van Kolck (94)]
 - 1. soft dilaton (gluonium) in a NLSM: $U=\xi^2=e^{2i\pi/F_\pi}\,, \sqrt{\kappa}=F_\pi/F_{\chi_s}$

$$\mathcal{L} = \bar{\psi}i(\partial \!\!\!/ + \mathcal{V})\psi + g_A\bar{\psi}\mathcal{A}\gamma_5\psi - \frac{m}{m}\left(\frac{\chi_s}{F_{\chi_s}}\right)\bar{\psi}\psi + \frac{F_\pi^2}{4}\left(\frac{\chi_s}{F_{\chi_s}}\right)^2 \operatorname{tr}\left[\partial_\mu U^\dagger\partial^\mu U\right] + \mathcal{L}(\chi_s)$$

2. linearization:
$$\Sigma=\sqrt{\kappa}U\chi=s+i\vec{\tau}\cdot\vec{\pi}\ \&\ B=\frac{1}{2}[(\xi+\xi^\dagger)-\gamma_5(\xi-\xi^\dagger)]\psi$$

$$\mathcal{L} = \bar{B}i\partial \!\!\!/B - \frac{m_N}{2F_\pi} \bar{B} \left[\Sigma + \Sigma^\dagger + \gamma_5 \left(\Sigma - \Sigma^\dagger \right) \right] B + \frac{1}{4} \text{tr} \left[\partial_\mu \Sigma \cdot \partial^\mu \Sigma^\dagger \right]$$

$$+\frac{m_s^2}{64F_\pi^2}\left(\operatorname{tr}\left[\Sigma\Sigma^\dagger\right]\right)^2 - \frac{m_s^2}{32F_\pi^2}\left(\operatorname{tr}\left[\Sigma\Sigma^\dagger\right]\right)^2\ln\left(\frac{\operatorname{tr}\left[\Sigma\Sigma^\dagger\right]}{2F_\pi^2}\right) + \mathcal{L}_{\operatorname{sing}}(1/\operatorname{tr}\left[\Sigma\Sigma^\dagger\right];\kappa,g_A)$$

3. a LSM $\mathcal{L}(s, \vec{\pi}, B)$ emerges when $\kappa \to 1$ & $g_A \to 1$ (dilaton limit).

$$\mathcal{L}_{\text{sing}} = (1 - \kappa) \mathcal{F}(1/\text{tr}[\Sigma \Sigma^{\dagger}]) + (1 - g_A) \mathcal{G}(1/\text{tr}[\Sigma \Sigma^{\dagger}]) \to 0$$

dilaton limit chiral restoration

- introduce vector mesons: $(N, \pi, \rho, \omega, \chi)$ [CS-Lee-Paeng-Rho (2011)] hidden local symmetry (HLS) [Bando-Kugo-Uehara-Yamawaki-Yanagida (85)]
 - an extension of non-linear chiral Lagrangian: $U=\xi^2 \to \xi_L^\dagger \xi_R$
 - vector mesons $V=\rho,\omega$ introduced as gauge bosons of HLS (redundancy in decomposition of U)
 - chiral perturbation theory: $m_V \sim \mathcal{O}(p)$ [Georgi, Tanabashi, Harada-Yamawaki]

results:

- -dilaton limit: $\kappa=1$ and $g_A=g_V$ (common to "naive" and mirror) cf. $g_A=1$ recovers algebraic sum rules [Beane-van Kolck (94)]
- -consequence: VN repulsion suppressed $g_{VN}=g\left(1-g_{V}\right)\rightarrow0$
 - * softer equation of state at high density
 - * two-body repulsion via vector-meson exchanges suppressed
 - * symmetry energy suppressed: $E_{
 m sym} \propto g_{
 ho N}^2$
- unchanged at quantum level: IR fixed point $(g_A = g_V = 1)$

Implications, remarks and issues asymmetric nuclear mass EoS

- how does E_{sym} behave above ρ_0 ? onset of kaon condensation?
- softer EoS w/ quenching $g_{\rho N}$ vs. $1.97 M_{\odot}$ neutron star? [Demorest et al.,(10)] \Leftrightarrow three-layered model (NM, kaon condensed NM, SQM): bag "constant" $B(\rho) < B(\rho=0)$, consistent with the soft-dilaton picture [Kim-Lee-Rho (11)]

scaler modes and mixing

- ullet 2-quark, 4-quark and glueball states, three-level crossing at T and ho
- ullet a toy model implementing χ sym. and scale inv. [CS-Mishustin (11)] \Rightarrow a large vacuum $m_\sigma \sim 1$ GeV & $T_{
 m chiral} \simeq T_{
 m deconf}$ at $\mu=0$

what protects dilaton-limit fixed point?

- \bullet vector realization? [Georgi (89,90)]: if $g\to 0$ then symmetry enlarged, $SU(2)\times SU(2)\times SU(2)\to [SU(2)]^4$
- mended symmetry? [Weinberg (69,90)]: (s, π, ρ, a_1) classified by 4 irr. repr., becomes manifest at dilaton limit when A_1 included

Conclusions

- an effective chiral Lagrangian with scale invariance
 - dilaton limit associated with IR fixed point at quantum level
 - consequence: VN repulsive forces suppressed
 - common to standard and mirror assignments of chirality
 - dilaton limit \simeq Georgi's vector limit? or Weinberg's mended symmetry?
- ullet at which T or ho does dilaton limit set in?
- mixed scaler modes: quarkonium, tetraquarks, glueballs
- ullet how to make a reliable estimate of m_0 in dense matter?
- what are phenomenological consequences on thermodynamics?