

Isospin Matter

Pengfei Zhuang Tsinghua University, Beijing

● *Phase Diagram at finite μ_I*

BCS-BEC Crossover in pion superfluid

QCD Phase Diagram

Questions: 1) What is the phase of quark matter at finite μ^I ? 2) Is μ_l effect similar to μ_B effect?

D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592(2001) J. B. Kogut, D. K. Sinclair, Phys. Rev. D 66, 034505(2002) K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D64, 016003 (2001) M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034(2003) Michael C. Birse, Thomas D. Cohen, and Judith A.McGovern, Phys. Lett. B 516, 27 (2001) D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003) A.Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli, Phys. Rev. D 69, 096004 (2004) M. Frank, M. Buballa and M. Oertel, Phys. Lett. B 562, 221 (2003) L. He and P. Zhuang, Phys. Lett. B 615, 93 (2005)

BCS and BEC Pairing

in BCS, T^c is determined by thermal excitation of fermions, in BEC, T^c is controlled by thermal excitation of collective modes. Is there a similar BCS-BEC structure for QCD condensed matter ?

●*there is reliable lattice QCD result at finite T, but not yet precise lattice simulation at finite μ, we have to consider effective models.*

● *the physics is vacuum excitation at finite T but vacuum condensate at finite μ.*

●*the BCS inspired Nambu-Jona-Lasinio (NJL) model successfully describes the chiral condensate and color condensate.*

NJL at Finite μ^I

He, Jin and PZ, PRD71, (2005)116001

NJL with isospin symmetry breaking

symmetry breaking
\n
$$
L_{NL} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m_0 + \mu \gamma_0 \right) \psi + G \left(\left(\overline{\psi} \psi \right)^2 + \left(\overline{\psi} i \tau_i \gamma_5 \psi \right)^2 \right)
$$

quark chemical potentials

$$
L_{NIL} = \psi \left(\frac{\nu}{\rho} \frac{U_{\mu} - m_0 + \mu}{\rho} \frac{U_{\mu}}{\rho} \right) + O\left(\frac{\psi \psi}{\rho} \right) + \psi \left(\frac{\psi \nu_i}{5} \frac{U_{\mu}}{\rho} \right)
$$
\npotentials

\n
$$
\mu = \begin{pmatrix} \mu_u & 0 \\ 0 & \mu_d \end{pmatrix} = \begin{pmatrix} \mu_B / 3 + \mu_I / 2 & 0 \\ 0 & \mu_B / 3 - \mu_I / 2 \end{pmatrix}
$$

chiral and pion condensates with finite pair momentum

hiral and pion condensates with finite pair momentum

\n
$$
\sigma = \langle \overline{\psi} \psi \rangle = \sigma_u + \sigma_d, \quad \sigma_u = \langle \overline{u}u \rangle, \quad \sigma_d = \langle \overline{d}d \rangle
$$
\n
$$
\pi_+ = \sqrt{2} \langle \overline{u}i\gamma_5 d \rangle = \frac{\pi}{\sqrt{2}} e^{2i\overline{q}\cdot\overline{x}} \quad \text{(for } \mu_1 > 0), \quad \pi_- = \sqrt{2} \langle \overline{d}i\gamma_5 u \rangle = \frac{\pi}{\sqrt{2}} e^{-2i\overline{q}\cdot\overline{x}} \quad \text{(for } \mu_1 < 0)
$$

quark propagator in MF

 $S^{-1}(p,\vec{q}) = \begin{cases} \gamma^{\mu} p_{\mu} - \vec{\gamma} \cdot \vec{q} + \mu_{\mu} \gamma_0 - m & 2iG\pi \gamma \\ 2iG\pi \gamma_5 & \gamma^{\mu} p_{\mu} + \vec{\gamma} \cdot \vec{q} + \end{cases}$ equations: $\Omega = G(\sigma^2 + \pi^2) - \frac{T}{V} \text{Tr} \text{Ln } S^{-1}$ $\mu_{(p,\vec{q})} = \left(\gamma^{\mu}p_{\mu} - \vec{\gamma}\cdot\vec{q} + \mu_{\mu}\gamma_{0} - m\right)$ 2iG $\pi\gamma_{5}$ $\mu_u r_0$ *m* $\lambda^{\mu} p_{\mu} + \vec{\gamma} \cdot \vec{q} + \mu_d \gamma_0$ 2 ropagator in MF
 $(p,\vec{q}) = \begin{pmatrix} \gamma^{\mu}p_{\mu}-\vec{\gamma} & \ 2 & \end{pmatrix}$ *u d NE*
 p_u $-\vec{\gamma} \cdot \vec{q} + \mu_u \gamma_0 - m$ 2*iG k propa*
S⁻¹(*p*, \vec{q} $\cdot \vec{q} + \mu_u \gamma_0 - m$ 2*iG* $\pi \gamma_5$
iG $\pi \gamma_5$ $\gamma^{\mu} p_{\mu} + \vec{\gamma} \cdot \vec{q} + \mu_d \gamma_0 - m$ μ μ μ μ $\sqrt{2}$

or in MF
 $\gamma^{\mu} p_{\mu} - \vec{\gamma} \cdot \vec{q} + \mu_{\mu} \gamma_0 - m$ 2*iG* $\pi \gamma_5$ $\begin{pmatrix} \n\dot{x} + \mu_u \gamma_0 - m & 2iG\pi \gamma_5 \\
\pi \gamma_5 & \gamma^\mu p_\mu + \vec{\gamma} \cdot \vec{q} + \mu_d \gamma_0 - m \n\end{pmatrix}$ **oropagator in MF**
 γ ¹(p, \vec{q}) = $\begin{pmatrix} \gamma^{\mu}p_{\mu}-\vec{\gamma}\cdot\vec{q}+\mu_{\mu}\gamma_{0}-m & 2iG\pi\gamma_{5} \end{pmatrix}$ = $\begin{pmatrix} \gamma^{\mu}p_{\mu}-\vec{\gamma}\cdot\vec{q}+\mu_{\mu}\gamma_{0}-m & 2iG\pi\gamma_{5} \end{pmatrix}$ = n = n ator in MF
= $\begin{pmatrix} \gamma^{\mu} p_{\mu} - \vec{\gamma} \cdot \vec{q} + \mu_{u} \gamma_{0} - m & 2iG\pi \gamma_{5} \\ 2iG\pi \gamma_{5} & \gamma^{\mu} p_{\mu} + \vec{\gamma} \cdot \vec{q} + \mu_{d} \gamma_{0} - m \end{pmatrix}$ $m = m_{0}$ $m = m_0 - 2G\sigma$

gap equations:

$$
2iG\pi\gamma_5 \qquad \gamma^{\mu}p_{\mu} + \vec{\gamma} \cdot \vec{q} +
$$

$$
\Omega = G(\sigma^2 + \pi^2) - \frac{T}{V} \text{Tr} \text{Ln } S^{-1}
$$

equations:
\n
$$
\Omega = G(\sigma^2 + \pi^2) - \frac{T}{V} \text{Tr} \text{Ln } S^{-1}
$$
\n
$$
\frac{\partial \Omega}{\partial \sigma_u} = 0, \quad \frac{\partial^2 \Omega}{\partial \sigma_d^2} \ge 0, \qquad \frac{\partial \Omega}{\partial \sigma_d} = 0, \quad \frac{\partial^2 \Omega}{\partial \sigma_d^2} \ge 0, \qquad \frac{\partial \Omega}{\partial \pi} = 0, \quad \frac{\partial^2 \Omega}{\partial \pi^2} \ge 0, \qquad \frac{\partial \Omega}{\partial q} = 0, \quad \frac{\partial^2 \Omega}{\partial q^2} \ge 0
$$

Phase Structure of Pion Superfluid

5 5 $3/5$, $m - \mu_0$ $\begin{cases} 1, & m = \sigma \end{cases}$, , , *m* $i\tau_{\scriptscriptstyle +} \gamma_{\scriptscriptstyle 5}$, m $i\tau_{\gamma}$ ₅,*m* $i\tau_{3}\gamma_{5}$, m $\pi_+ \gamma_5, m = \pi_+$ $\pi_{\gamma_5}, m = \pi_{\gamma_5}$ $\pi_3 \gamma_5$, $m = \pi_0$ $1/5, m - \mu$ $1/5, m - n$ $\left| i\tau_{+}\gamma_{5},m\right|$ $\Gamma_m = \left\{ \right.$ $\int i\tau_{-}\gamma_{5}$, $m=$ $\left(i\tau_{3}\gamma_{5},m\right)$ $(1_mS(p+k)1_nS(p))$ 4 * $(k) = i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left(\Gamma_m^* S(p+k) \Gamma_n S(p) \right)$ $_{mn}(k) = i \int \frac{d}{(2\pi)^4} \text{Tr} \left(\Gamma_m^* S(p+k) \Gamma_n \right)$ $\Pi_{mn}(k) = i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left(\Gamma^*_{m} S(p+k) \Gamma_{n} S(p) \right)$ *meson polarization functions* *meson propagator* D *at RPA considering all possible channels in the bubble summation* D at RPA
 \cong \times + \times + \times

all possible channels

functions
 $\frac{1}{4} \text{Tr} (\Gamma_m^* S(p+k) \Gamma_n S(p))$

ng normal σ, π_+, π_+

determines meson r
 $-2G\Pi_{\sigma\pi_+}(k)$ -2
 $1-2G\Pi_{\pi_*\pi_+}(k)$ -2
 $-2G\Pi_{\pi_*\pi_+}(k)$ -2

n mod *He, Jin, and PZ, PRD71, (2005)116001*

mixing among normal $\sigma, \pi_{\scriptscriptstyle +}, \pi_{\scriptscriptstyle -}$ in pion superfluid phase

pole of the propagator determines meson masses

If the propagator determines meson masses
$$
M_m
$$

\n
$$
\det \begin{pmatrix}\n1-2G\Pi_{\sigma\sigma}(k) & -2G\Pi_{\sigma\pi_{+}}(k) & -2G\Pi_{\sigma\pi_{-}}(k) & -2G\Pi_{\sigma\pi_{0}}(k) \\
-2G\Pi_{\pi_{+}\sigma}(k) & 1-2G\Pi_{\pi_{+}\pi_{+}}(k) & -2G\Pi_{\pi_{+}\pi_{-}}(k) & -2G\Pi_{\pi_{+}\pi_{0}}(k) \\
-2G\Pi_{\pi_{-}\sigma}(k) & -2G\Pi_{\pi_{-}\pi_{+}}(k) & 1-2G\Pi_{\pi_{-}\pi_{-}}(k) & -2G\Pi_{\pi_{-}\pi_{0}}(k) \\
-2G\Pi_{\pi_{0}\sigma}(k) & -2G\Pi_{\pi_{0}\pi_{+}}(k) & -2G\Pi_{\pi_{0}\pi_{-}}(k) & 1-2G\Pi_{\pi_{0}\pi_{0}}(k)\n\end{pmatrix}_{k_{0}=M_{m},\vec{k}=0}
$$

the new eigen modes $\bar{\sigma}, \bar{\pi}_+, \bar{\pi}_-$ are linear combinations of σ, π_+, π_-

Meson Spectral Functions

Jniversity

Sun, He and PZ, PRD75, (2007)096004

*meson spectra function between the temperatures T^c and T**

 $\rho(\omega, \vec{k}) = -2 \operatorname{Im} D_{R}(\omega, \vec{k})$

π – π scattering and BCS-BEC Crossover

BCS: overlapped molecules, large π – π cross section BEC: identified molecules, ideal Boson gas limit

 screen mass

$$
1 - 2G\mathbb{H}_m(0, (iM_m + \Gamma_m)^2) = 0,
$$

Meson Screening Mass

corresponding to the global isospin symmetry breaking, there is a Goldstone mode in the pion superfluid, which leads to a long range force between two quarks !

Quark Potential in Pion Superfluid

 1) the maximum potential is located at the phase boundary . 2) the potential in pion superfluid is non-zero at extremely high isospin density, totally different from the temperature and baryon density effects !

- *1)There exists a pion superfluid at high isospin density, and the Goldstone mode controls the thermodynamics of the system.*
- *2) There exists a BCS-BEC crossover in the pion superfluid.*
- *3) The maximum coupling is located at the phase transition boundary, similar to the temperature and baryon density effects.*
- *4) The coupling is non-zero even at extremely high isospin density, totally different from the temperature and baryon density effects.*

Applications in neutron stars and intermediate energy nuclear collisions, like mass-radius relation, pion superfluid in curved space, and pion_-/pion_+ ratio.