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QCD Lagrangian and Symmetry

Chiral limit: Taking vanishing quark masses mg;— O.

QCD Lagrangian 1
qululD/qu +qR)/lu|DluqR __Ga Ga[uv
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has maximum global Chiral symmetry :

SU, (3)xSU.(3)xU , (1) xU; (1)




The Problem

However, in the low-energy meson spectrum, we
have not seen such symmetry patterns.

The natural question is how these (exact or
approximate) symmetries are broken
(explicitly or spontaneously)?



QCD Lagrangian and Symmetry

« QCD Lagrangian with massive light quarks
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q=(ud,s), M = diag.(my, my, mg) = diag.(my, mg, my)
Approximate Global Chiral Symmetry
U(3)L x U(3)g, m; << Aqepli=1,2,3)
Instanton Effects via t'"Hooft Determination
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Effective Lagrangian

Based on Loop Regularization
Y.B. Dai and Y-L. Wu, Euro. Phys. J. C 39 s1 (2004)

Effective Lagrangian for Quarks and Bound States

Integrating over the gluon field and considering the bound state solution

Lei(q,q.®) = @"idq+ @upArar + GrpArar — [ Gu(® — M)qr + hee. ]
+ 2;1.?’51* [(I’I\-'IT + M(I'T} - ,u.?tr(INI’Jr + finst (det @ + h.c.)

Note that the field ® has no kinetic terms, so it is an
auxiliary field and can be integrated out.

Effective Four Quark Interactions-NJL at low energy
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Dynamically Generated
Spontaneous Symmetry Breaking

Instead, if we integrate out the quark fields, we can
obtain the following effective potential.

Dynamically Generated Effective Potential
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with ,ﬂ.‘}, = and A the three diagonal matrices
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Dynamically Generated
Spontaneous Symmetry Breaking

Recall that the pseudoscalar mesons, such as 1T, n, are
much lighter than their scalar chiral partners. This
Indicates that we should choose our vacuum expectation
values (VEVS) in the scalar fields:

Vacuum Expectation Values{VEVs)

O(x) = & (X)p(x)éR(X), ¢(x) =V +¢(x), <¢>=V =diag.(vi,v,v3)

U(x) = & (x)ER(x) = £3(x) = &7




Dynamically Generated
Spontaneous Symmetry Breaking

By differentiating the effective potential w.r.t. the VEVSs,
we obtain the following Minimal Conditions/Generalized
Gap Equations:

Minimal Conditions/Generalized Gap Equations

- (ﬂ?)ivj + (ﬂ.lﬂ“)i m; — Z}liﬁl? + p.insﬁgﬁ-’i =0, i=1.2,3 ¥ =vivavy

If we take the limit of vanishing instanton effects, we can
recover the usual gap equation

Gap Equation without Instanton (viys = 0)
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Scalars as Partner of Pseudoscalars

According to their guantum numbers, we can reorganize the
mesons into a matrix form.

Scalar mesons:
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Pseudoscalar mesons :
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Mass Formula

Pseudoscalar mesons :
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Mixing Angles
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Mass Formula

Scalar Mesons - Lightest Composite Higgs Bosons

~ min ~ 2(21my + Mg )My + 2vipsva ~ Svg
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Predictions for Mass Spectra &
Mixings

Input Parameters | | Ir=9%4MeV  vo=340MeV

my =~ 3.8MeV my = 5.7TMeV mg/mg == 20.5

Output Predictions | | s ~ 144MeV,  jijn =~ 8.0MeV

Mg =~ 922MeV, s =~ 333MeV

< fiu >~< dd >~< 55 >= —(242MeV)?

m; ~ 139MeV, My |exp = 139MeV
myo =~ 500MeV, Mo lexp =~ 500MeV
mg+ =~ 496MeV Mg+ |exp = 496MeV
m, =~ 503MeV, My |exp == 548MeV
m, =~ 986MeV, m,|exp = 958MeV 14




Predictions

m,, ~ 978 MeV, mgjjp- =984 8+ 1.4 MeV PDG
my, = 970 MeV, m, " =797 £19+ 43 MeV ET7912
my, ~ 1126 MeV, 111?5}[' =980+ 10 MeV PDG

m, =~ 677 MeV, m- = (400 - 1200) MeV PDG
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fp ~ —18°, fg ~ —18°
ng = cosflp n+sinflp n'
g = cosfp n' —sinfp n
fg = cosflg fy +sinflg o

f. = cosfly 0 — sinflg fy
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Chiral Thermodynamic Model
of QCD
and I1ts Critical Behavior
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Motivation

Provided that chiral dynamical model
works so well to show chiral symmetry
breaking and to predict the meson
spectrum, we want to see what happens
for this model at finite temperature

-- Chiral symmetry will be restored at high
enough temperature

17



Effective Lagrangian

by DH, Y-L Wu, 1110.4491 [hep-ph]

Effective Lagrangian for Quarks and Bound States

Lei(9.G,9) = @i0,9+ QyuA o + GRYARGR — [qL(® — M)gr + h.c]
H tr(OMT + MOT) - i2trdd’

Two simplifications:
@ Only consider two flavors
@ Ignore the instanton effective action
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Dynamically Generated
Spontaneous Symmetry Breaking

By integrating out the quark fields with Closed Time Path
(CTP) formalism, we obtain the following effective potential
at finite temperature

Dynamically Generated Effective Potential
. . 1 . .
Veir(®) =  —tref2 (T) (M + MdT) + EtrFﬁE(T)(M- + ®70)

4o treA(T[(B)? + (816
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Dynamically Generated
Spontaneous Symmetry Breaking

with i2(T), fi5,(T) and A(T) the three diagonal matrices

B(T) = 1 g5 (MALo(T) + WPL(T))
N, —
am(T) = #fn - ﬁ(MELz(T) + M Lo(T))
AT) = 255Lo(T)
With the Two Regularized Diagonal Matrices Lg(T) and Ly(T)

12 ﬁ\/k2+ﬂﬂ29“ﬂ+ 1+ A VkEHiE 4 4
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2 u
_ Ly 4 (e 1
L(T) = L) - [ d%

\/EE 4 mz(eﬁ\fﬁ?+mﬂ 4 1)




Dynamically Generated
Spontaneous Symmetry Breaking

Recall that the pseudoscalar mesons, such as 1T, n, are
much lighter than their scalar chiral partners. This
Indicates that we should choose our vacuum expectation

values (VEVS) in the scalar fields:

Vacuum Expectation Values(VEVs)

O(x) = £L(x)o(x)€r(X). d(x) = V(T) +¢(x). <¢>=V(T)= diag.(vi(T), va(T))

U(x) = & (x)Ep(x) = & (x) = & 7
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Dynamically Generated
Spontaneous Symmetry Breaking

By differentiating the effective potential with respect to the
VEVSs, we can obtain:

Minimal Conditions/Generalized Gap Equations

— D5(T)i(T) + i (T)m = 24(T)m>(T) = 0, i=1,2

After we take the limit of zero current quark masses, the
gap equation can be simplified to

Gap Equation with Vanishing Current Quark Masses

N M? yz{l']
2 c 2 2 T c o
K g 2[ c Juu::{ }(n E(T) Yer ‘|‘}"2( Mg }}]

O kz
dk
m? jﬂ VK2 +v2(T)(e” VE2+va(T) o 1)
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Critical Temperature
For Chiral Symmetry Restoration
In order to determine the critical temperature for chiral

symmetry restoration, we need to make the following
assumption:

Further Assumption

wr(T) = yvo(T)

Note that y; 2 (T) is the coupling of the four quark
Interaction in our model. In principle this interaction comes
by integrating out the gluon fields. Thus, this assumption
Indicates that the low energy gluon dynamics have the

same finite temperature dependence as the quark field.
23



Critical Temperature
For Chiral Symmetry Restoration

With the above assumption, we can determine the critical
temperature for chiral symmetry restoration in the chiral
thermodynamic model (CTDM)

Critical Temperature for Chiral Symmetry Restoration (When v,(T)? — 0)

M2 3
Tc:\) ° M2 - p2(in P—mum{“—m
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Scalars as Partner of Pseudoscalars
&
Lightest Composite Higgs Bosons
Scalar mesons:

; :3[' g
1] I ir a—
3- 4 LA
| 0 ..h."i ! "'-'IE J
Pseudoscalar mesons :
..'TD | i'? ?r_

Vo =| 2 V2 i
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Mass Formula

Pseudoscalar mesons :

45(T)
—em

up(T) = (E(T) + 2(T)Vo(T))Vo(T) = 1 (T)Vo(T) = yvo(T)’

Scalar mesons (Lightest Composite Higgs Boson)

M2, (T) = m2(T) = 3(m(T) + m3(T)) = 6(T)
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Predictions for Mass Spectra

Input Parameters

f. = 94MeV, mo. = 139MeV,
m = 4.76MeV.

Output Predictions

Vo = 350MeV
M. = 881MeV, us = 312MeV
o = 2uf = (226MeV/)?

(gq) = —(262MeV)?

T. = 200MeV
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Chiral Symmetry Restoration
at Finite Temperature

Vacuum Expectation Value (VEV)

1,(T]
350 —_—

ml:-f-
251:-5—
sz—
151:'5—
IIIH}E—
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Chiral Symmetry Restoration
at Finite Temperature

Pion Decay Constant

£(T) = AUT)Vo(T)2 = 2v6(T) \f 13;2 Lo(T)

Jel{T)

g0




Chiral Symmetry Restoration
at Finite Temperature

Quark Condensate

(GP(T) = =212 (T)Vo(T) = —2yvo(T)’

J-e@ @

250 F ——
200 f
150 -
100

sol

cl- ................. I|-1-
2
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Chiral Symmetry Restoration
at Finite Temperature

Mass for Pseudoscalar mesons

Y(T)  ymwo(T)
2T AT

m’.(T) =

M T}
140 E

120

100 F




Chiral Symmetry Restoration
at Finite Temperature

All of these quantities have the same scaling
behavior near the critical temperature,

Vo(T~ T.) o [T—Tf =05

This feature can be traced back to the fact that all of
these quantities are proportional to the VEV near
the critical temperature
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Summary and Outlook

In the simple chiral dynamical model, Prof.
Dai and Prof. Wu derived a consistent
spectrum of lowest lying meson states.

Within this model, we discuss the chiral
symmetry restoration at finite temperature by
determining the critical temperature and
critical behavior of some characteristic
guantities.

In the future work, we need to consider finite
chemical potential effects. Also, we also want
to extend the current work into three flavor
case and consider instanton finite
temperature effects. 33
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Dynamically Generated
Spontaneous Symmetry Breaking

Dynamically Generated Effective Lagrangian

Len(®) = % 1’:; treLo(T)[D,®'D*® + D, ®D* ' — (&7 d — M?)? — (ddT — M?)?]
N NP PV
+75,3 MetreLa(T)[(®7® — M%) + (P07 — V)]

1 tre(OMT 4+ MOT) — 2 trdd’

With the Two Regularized Diagonal Matrices Ly(T) and Ly(T)
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