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Fluctuations at the critical point

non-monotonic fluctuations (ebe) in pion and proton multiplicities
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(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

(NA49 collaboration J. Phys. G 35 (2008))

BUT: critical slowing down

(B. Berdnikov and K. Rajagopal, PRD 61 (2000))

Fluctuation measures based on the second moments are not
conclusive about the critical behavior.



Definition of the kurtosis

susceptibilities of conserved charges (N: net-baryon, net-charge
number) or the experimentally feasible net-proton number

χn(T , µN) =
1

VT 3
∂n ln Z (V ,T , µN)

∂(µN /T )n

∣∣∣∣
T

effective kurtosis:

K eff =
χ4
χ2

=
〈δN4〉
〈δN2〉

− 3〈δN2〉 ≡ κσ2 .

Higher moments of the distribution of conserved quantities are more
sensitive to critical phenomena.

〈δN4〉 − 3〈δN2〉2 ∝ ξ7

(M. A. Stephanov, PRL 102, 032301 (2009))

The kurtosis is negative on the crossover side of the critical point!
(M. A. Stephanov, PRL 107, 052301, (2011))



1. Dynamic fluctuations of the order parameter of chiral symmetry
in chiral fluid dynamics.

2. Net-baryon and net-proton kurtosis in UrQMD.



Motivation

I Fluctuations have so far been investigated in static systems.
I However, systems created in a heavy-ion collisions are finite in

size and time and inhomogeneous.
I Necessary to propagate fluctuations explicitly!

I Nonequilibrium chiral fluid dynamics:
I phase transition model +
I dissipation and noise +
I fluid dynamics



The linear sigma model with constituent quarks

L = q
[
iγµ∂µ − g (σ + iγ5τ~π)

]
q + 1/2

(
∂µσ

)2
+ 1/2

(
∂µ~π

)2−U (σ, ~π)

effective potential at µB = 0

Veff = −
T
V

ln Z = −dqT
∫ d3p

(2π)3 ln
(

1 + exp
(
−E

T

))
+ U (σ, ~π)

Tune the strength of the phase tran-
sition via the coupling g.

dynamic symmetry breaking
first order phase transition



Nonequilibrium chiral fluid dynamics

I Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

I Fluid dynamic expansion of the quark fluid = heat bath

T µν
q = (e + p)uµuν − pgµν

I Energy and momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

=⇒ Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



The two-particle irreducible (2PI) effective action

for the σ mean field and the full quark propagators Sab

Γ[σ,S] = Scl[σ]− iTr ln S−1 − iTrS−1
0 S + Γ2[σ,S] ,

equation of motion for σ and Sab

δΓ[σ,S]

δσa = 0 and
δΓ[σ,S]

δSab = 0

give conserving transport equations if the self-energy is given by

−iΣab(x , y) = − δΓ2[σ,S]

δSab(x , y)
.

(J. M. Luttinger, J. C. Ward, Phys. Rev. 118 (1960); G. Baym, L. P. Kadanoff, Phys. Rev. 124 (1961); G. Baym, Phys. Rev. 127 (1962))



The 2PI effective action

Γ2[σ,S] = g
∫
C

d4xtr(S++(x , x)σ+(x)+S−−(x , x)σ−(x))

equation of motion for the σ mean field

− δScl[σ]

δσa =
δΓ2[σ,S]

δσa = gtrSaa(x , x)

the effective action along the contour

Γ[σ,S] =gtrS++
th (x , x)∆σ(x)− T

V
ln Zth

+
∫

d4xD[σ̄](x)∆σ(x)

+
i
2

∫
d4x

∫
d4y∆σ(x)I [σ̄](x , y)∆σ(y)

with ∆σ = σ+ − σ− and σ̄ = 1/2(σ+ + σ−) on the contour.



Semiclassical equation of motion for the sigma field

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

damping term η and noise ξ for k = 0

η = g2 dq

π

(
1− 2nF

(mσ

2

)) (m2
σ

4 −m2
q)

3
2

m2
σ

〈ξ(t)ξ(t ′)〉 = 1
V

δ(t− t ′)mση coth
(mσ

2T

)
below Tc damping by the interaction with the hard pion modes, apply
η = 2.2/fm from (T. S. Biro and C. Greiner, PRL 79 (1997))



Fluid dynamics with energy-momentum exchange

Energy-momentum tensor of the coupled system is conserved for the
full propagator:

∂µT µν
q = gtrS++(x , x)

∂µT µν
σ = −gtrS++(x , x)

then ∂µ(T
µν
q + T µν

σ ) = 0
HERE, approximation of an ideal fluid and the source term

∂µT µν
q =gtrS++

th (x , x)

= 4dq

∫ d4p
(2π)4 pµpνfFD(Ep)

= −∂µT µν
σ = Sν = (gρs + η∂t σ)∂

νσ



Evolution in a box

I nonexpanding, finite heat bath
I initialize the sigma field in equilibrium at T > Tc

I initialize the energy density at a Tsys < Tc

I update sigma field on the grid according to the Langevin equation



Equilibration for a heat bath with reheating
Critical point

relaxation of the σ field

temperature

I During relaxation of the σ-field
the temperature of the heat
bath increases.

I Coupled dynamics equilibrate
at a given Teq and σeq.

I Green curves correspond to
scenarios with Teq near Tc .
⇒ Critical slowing down!

(MN, S. Leupold, M. Bleicher, arXiv:1105.1396)



Equilibration for a heat bath with reheating
First order phase transition

relaxation of the σ field

temperature

I Strong reheating during
relaxation of the σ-field.

I Long (initial) relaxation times
for Tsys close to the phase
transition.

I Except for the scenario with
Tsys = 20 MeV the heat bath
reheats to T > Tc .

I System gets trapped in
metastable states.

(MN, S. Leupold, M. Bleicher, arXiv:1105.1396)



Fluid dynamic expansion of the heat
bath

I very simple initial conditions: almond-shaped initial temperature
distribution, sigma field and energy density in equilibrium at T (x)

I 3+1d fluid dynamic expansion
I update sigma field on the grid according to the Langevin equation
I very good energy conservation



Reheating and supercooling

relaxation of the σ field temperature

I oscillations at the critical point
I supercooling of the system at the first order phase transition
I reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations
in one event

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk

ωk =
√
|k |2 + m2

σ

mσ =
√

∂2Veff/∂σ2|σ=σeq

deviation from equilibrium

critical point

first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Correlation length at the critical point

ξ1: averaged correlation length from ξ−1 =
√

∂2Ω
∂σ2

∣∣
σ=σ(x)

ξ3: averaged correlation length from ξ−1 =

√
∂2Ω
∂σ2

∣∣
σ=σeq

ξ2: correlation length obtained from fits to G(r ) = σ2
eq +

1
r exp(− r

ξ )



Pion fluctuations

So far: pion fluctuations were not considered and ~π = 〈~π〉 = 0.
Now: extend the model to explicitly propagate pion fluctuations, too.

critical point first order phase transition

Larger isospin fluctuations in a scenario with a first order phase
transition!



Polyakov-loop extended chiral fluid dynamics

L = q
[
i
(

γµ∂µ − igQCDγ0A0

)
− gσ

]
q + 1/2

(
∂µσ

)2 −U (σ)−U (`, ¯̀)

(C. Ratti, M. A. Thaler, W. Weise, Phys. Rev. D 73 (2006), B.-J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76 (2007))

dynamics of the Polyakov loop (A. Dumitru and R. D. Pisarski, Nucl. Phys. A 698 (2002))

2Nc

g2
QCD

∂µ∂µ`T 2 + η`∂t `+
∂Veff

∂`
= ξ`

in a box fluid dynamic expansion

(C.Herold, MN, I.Mishustin, M.Bleicher, in preparation

See talk by C.Herold on Friday 14.00, Parallel 5!



Relativistic Transport Approach

cover more effects in realistic simulations of heavy-ion collisions,
here: UrQMD (www.urqmd.org)

issues:
I eventwise baryon number and charge conservation instead of

grandcanonical ensembles
I centrality selection and centrality bin width effects



Analytic toy model
Baryon number conservation limits fluctuations of net-baryon number.

Pµ(N,C) = N (µ,C)e−µ µN

N !
on [µ−C, µ + C]

µ: the expectation value of the original Poisson distribution, N (µ,C):
normalization factor, C > 0: cut parameter

C = α
√

µ

(
1−

(
µ

Ntot

)2
)
.

α = 3, Ntot = 416.

I An increase of the average
net-baryon number does not
lead to stronger fluctuations.

I At the upper limit of
Ntot = 416 the distribution
changes to a δ-function
(K eff

δ = 0).



Net-baryon number distribution in UrQMD

I central Pb+Pb collisions at
Elab = 20AGeV

I fit to a Poisson distribution
I shoulders are enhanced
I tails are cut

=⇒ decrease from K eff
Poisson = 1

to K eff
UrQMD = −22.2

ratio of UrQMD to Poisson
distribution



Rapidity window dependence of the effective kurtosis

I Same qualitative behavior of the net-baryon kurtosis as expected
from the analytic toy model.

I Elab = 158AGeV
I The net-proton kurtosis

slightly follows this trend.
I The net-charge kurtosis is

not influenced, but error
bars are larger.

I For small net-baryon numbers in the acceptance, the values of
net-baryon, net-proton and net-charge kurtosis are compatible
with values of 0− 1.

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Energy dependence of the effective kurtosis

I adapting the rapidity
window to fix the mean
net-baryon number

I net-baryon effective
kurtosis does not show an
energy dependence

I fixed rapidity cut
I the net-baryon number

varies with
√

s
I for lower

√
s K eff becomes

increasingly negative
I at Elab = 2AGeV:
〈NB−B̄〉 ' 240

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Centrality selection, e.g. by impact parameter

We investigate central collisions with b ≤ 2.75 fm.
The superposition of two Gauss distributions (with mean µ1,2 and
variance σ1,2) has a negative kurtosis

K2 =
1/8∆µ4 + 3Σ2∆µ2 + 6Σ4

1/8∆µ4 + Σ2∆µ2 + 2Σ4 − 3 < 0

with ∆µ = |µ2 − µ1| and Σ2 = σ2
1 + σ2

2 .

The distribution approaches
a box-distribution with a
Kbox = −1.2.



Effects of centrality selection

Suggestion by STAR to reduce centrality bin width effects:

I calculate moments for each
fixed Ncharge in one wider
centrality bin

I take the weighted average

(MN et al., QM 2011 proceedings)

problems:

I (anti-) protons constitute a larger fraction of all charged particles
with decreasing energy

I fixing Ncharge puts a bias on the fluctuations
I baryon conservation and bias on fluctuation by centrality

selection lead to negative values of the kurtosis



Summary

I supercooling and reheating effects in nonequilibrium chiral fluid
dynamics

I enhanced sigma and pion fluctuations at a first order phase
transition

I dynamic correlation length at the critical point
I baryon number conservation and bias on fluctuations by

centrality selection lead to negative kurtosis
Outlook:

I extend chiral fluid dynamics to finite µB and study baryon density
fluctuations

I use realistic initial conditions and study event-by-event
fluctuations in chiral fluid dynamics



Fluid dynamics
Equation of state

EoS depends on the actual value of σ

pressure:
p(σ,T ) = −Veff(σ,T ) + U(σ)

energy density:

e(σ,T ) = T
∂p(σ,T )

∂T
− p(σ,T )

This relation is obtained from thermodynamic consistency, which is
guaranteed by the 2PI effective action!



Fluid dynamics
Initial conditions

temperature profile, Tini = 160 MeV:

T (~x , t = 0) =
Tini

(1 + exp((r̃ − R̃)/ã))(1 + exp ((|z| − lz)/ã))

sigma field:
σ(~x , t = 0) = σeq + δσ(~x) .

with
〈δσ2〉 = T

V
1

m2
σ

.

energy density in units of e0

e(~x , t = 0) = eeq(T , σ)



Energy-momentum conservation

for the full propagator:

∂µ(T
µν
q + T µν

σ ) = 0

HERE, approximation of an ideal
fluid and the source term

∂µT µν
q =gtrS++

th (x , x)

= −∂µT µν
σ = Sν

first order phase transition

critical point

(MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962)



Time evolution

energy density
critical point

first order phase transition

sigma field
critical point

first order phase transition



Energy transfer between the field and the heat bath

∆Ediss ' −∂µT µ0
σ ∆t = (gρs + η∂t σ)∂t σ∆t

The total energy of the σ field

Eσ = 1/2∂t σ
2 + 1/2~∇σ2 + U(σ)

first order phase transition
quench from T = 160 MeV to

T = 100 MeV

critical point
quench from T = 160 MeV to

T = 130 MeV


