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How to study the QCD phase diagram...

.. be brave and solve
Z(T.up) = [ D(A.q.qh)e %o

ab initio and nonperturbatively,

. be strong and collide heavy
ions at ultrarelativistic energies,

. be creative and study effec-
tive models of QCD.
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Fluctuations at the critical point

non-monotonic fluctuations (ebe) in pion and proton multiplicities
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(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

BUT: critical slowing down
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Fluctuation measures based on the second moments are not
conclusive about the critical behavior.



Definition of the kurtosis
susceptibilities of conserved charges (N: net-baryon, net-charge
number) or the experimentally feasible net-proton number

10" InZ(V, T, uy)
Xn(T, VN) - VT3 a(VN/T)n -

effective kurtosis:
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Higher moments of the distribution of conserved quantities are more
sensitive to critical phenomena.

(6N*) — 3(6N?)2 o &7

(M. A. Stephanov, PRL 102, 032301 (2009))
The kurtosis is negative on the crossover side of the critical point!

(M. A. Stephanov, PRL 107, 052301, (2011))



1. Dynamic fluctuations of the order parameter of chiral symmetry
in chiral fluid dynamics.

2. Net-baryon and net-proton kurtosis in UrQMD.



Motivation

Fluctuations have so far been investigated in static systems.

» However, systems created in a heavy-ion collisions are finite in
size and time and inhomogeneous.

Necessary to propagate fluctuations explicitly!
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Nonequilibrium chiral fluid dynamics:
> phase transition model + .
> dissipation and noise + J
> fluid dynamics




The linear sigma model with constituent quarks

L =7 [i7" — g (o +ivst)] q+1/2(3,0)% +1/2 (3,7%)% — U (0, )

effective potential at yg = 0

T d3 E .
Vot = —VInZ = —qu/ (271:,))3 In (1 + exp (T)) +U(o, )

crossover, T=140 MeV
ritical pomI,T 138.6 MeV
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Tune the strength of the phase tran- first order phase transition

sition via the coupling g.



Nonequilibrium chiral fluid dynamics

» Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

oU
0u0"'0 + — + gps + 1010 = ¢

o

» Fluid dynamic expansion of the quark fluid = heat bath
T\ = (e+p)utu’ — pg"
» Energy and momentum exchange
Ty =8 =-9,T"
Selfconsistent approach within the two-particle irreducible effec-

tive action!
(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



The two-particle irreducible (2PI) effective action

for the o mean field and the full quark propagators S
Tlo,S] = Sylo] — iTtIn S~ — iTrS; ' S+T2[0, 5],
equation of motion for ¢ and S

0T [o, S] 0T [o, S]
7 =0 and W =0
give conserving transport equations if the self-energy is given by

_ 5F2 [0’, S]

(J. M. Luttinger, J. C. Ward, Phys. Rev. 118 (1960); G. Baym, L. P. Kadanoff, Phys. Rev. 124 (1961); G. Baym, Phys. Rev. 127 (1962))



The 2Pl effective action

Iolo, S] = g/c d*xtr(S™ (x, x)o" (x) + S (x, x)o (x))

equation of motion for the ¢ mean field

_8Sale] _ oTzo. ]
o8 o2
the effective action along the contour

= gtrS?%(x, x)
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withAc =¢" -0~ and ¢ = 1/2((7+ + 0~) on the contour.



Semiclassical equation of motion for the sigma field

U
90" + 5o T9pst notr =¢

damping term # and noise ¢ fork =0
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below T, damping by the interaction with the hard pion modes, apply
n = 22/fm from (T. S. Biro and C. Greiner, PRL 79 (1997))



Fluid dynamics with energy-momentum exchange

Energy-momentum tensor of the coupled system is conserved for the
full propagator:

0u Ty = gtrS™(x, x)
0uTH = —gtrS™ (x, x)
then 9, (T4" + T#") =0

HERE, approximation of an ideal fluid and the source term

ou Ty =gtrSi/ (x, x)
d*p
= 4dq/ Wp”pl’pr(Ep)

= -9y T =8 = (gps +noto)d'c
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Evolution in a box

nonexpanding, finite heat bath

initialize the sigma field in equilibrium at T > T;

initialize the energy density ata Tsys < T¢

update sigma field on the grid according to the Langevin equation



Equilibration for a heat bath with reheating

Critical point

relaxation of the ¢ field
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(MN, S. Leupold, M. Bleicher, arXiv:1105.1396)

» During relaxation of the o-field
the temperature of the heat
bath increases.

» Coupled dynamics equilibrate
ata given Teq and oeq.

» Green curves correspond to
scenarios with Teq near Te.
= Critical slowing down!



Equilibration for a heat bath with reheating

First order phase transition

relaxation of the ¢ field

80 F

» Strong reheating during
relaxation of the o-field.

» Long (initial) relaxation times

B for Tsys close to the phase

t/fm transition.
temperature » Except for the scenario with

Tsys = 20 MeV the heat bath
reheatsto T > Tg.

» System gets trapped in
metastable states.
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T/MeV

(MN, S. Leupold, M. Bleicher, arXiv:1105.1396)
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Fluid dynamic expansion of the heat
bath

very simple initial conditions: almond-shaped initial temperature
distribution, sigma field and energy density in equilibrium at T(x)

3+1d fluid dynamic expansion
update sigma field on the grid according to the Langevin equation
very good energy conservation



Reheating and supercooling

relaxation of the o field temperature
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» oscillations at the critical point

» supercooling of the system at the first order phase transition
» reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations

in one event " .
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Correlation length at the critical point
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Pion fluctuations

So far: pion fluctuations were not considered and 77 = () = 0.
Now: extend the model to explicitly propagate pion fluctuations, too.

critical point flrst order phase transition

30 30
2 20 2 20

10 10

0oz 0
= 6 -m? G -10
4 -20 -20
2 -30 2 -30
! -12 -10 -8 6 -4 -2 0 2 4 6 8 10 12 o ! -12 <10 -8 -6 -4 -2 0 2 4 6 8 10 12 o

a/fm a/fm

Larger isospin fluctuations in a scenario with a first order phase
transition!



Polyakov-loop extended chiral fluid dynamics

L=7q [i (Y”ay - igocmOAo) —90} q+1/2(8,0) — U (o) —U(LT)

(C. Ratti, M. A. Thaler, W. Weise, Phys. Rev. D 73 (2006), B.-J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76 (2007))

dynamics of the Polyakov |OOp (A. Dumitru and R. D. Pisarski, Nucl. Phys. A 698 (2002))
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(C.Herold, MN, 1.Mishustin, M.Bleicher, in preparation

See talk by C.Herold on Friday 14.00, Parallel 5!



Relativistic Transport Approach

cover more effects in realistic simulations of heavy-ion collisions,
here UI’QMD (www.urgmd.org)

issues:

» eventwise baryon number and charge conservation instead of
grandcanonical ensembles

» centrality selection and centrality bin width effects



Analytic toy model
Baryon number conservation limits fluctuations of net-baryon number.

N

P.(N,C) = N (n, C)e‘?‘% on [u—C,u+C]
u: the expectation value of the original Poisson distribution, N (y, C):
normalization factor, C > 0: cut parameter

C=av (1 - (Nttof) |

» An increase of the average g
net-baryon number does not [
lead to stronger fluctuations. o

» At the upper limit of [
Niot = 416 the distribution B!
changes to a J-function [
(K;ff — o) 150

L L | I
0 100 200 300 400

o = 3, Nyt = 416.




Net-baryon number distribution in UrQMD
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central Pb+Pb collisions at
Ep., = 20AGeV
fit to a Poisson distribution
shoulders are enhanced
tails are cut

decrease from K&t =

Poisson

£f —
to Kfop = —22.2

* UrQMD
—Poisson
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ratio of UrQMD to Poisson
distribution



Rapidity window dependence of the effective kurtosis

» Same qualitative behavior of the net-baryon kurtosis as expected
from the analytic toy model.

3 i L .
» Eip = 158AGeV % o
» The net-proton kurtosis [ °
slightly follows this trend. sk 8
» The net-charge kurtosis is L o netbayon ;
H . * net proton
not influenced, but error [+ netcnarge :
bars are larger. e ‘ ; ‘
0 100 200 300 400
<NBB,

» For small net-baryon numbers in the acceptance, the values of
net-baryon, net-proton and net-charge kurtosis are compatible
with values of 0 — 1.

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Energy dependence of the effective kurtosis

» adapting the rapidity
window to fix the mean
net-baryon number

» net-baryon effective
kurtosis does not show an
energy dependence

» fixed rapidity cut

» the net-baryon number
varies with /s

» for lower /s K¢ff becomes
increasingly negative

> at Ejp, = 2AGeV:
(Ng_pg) ~ 240

K"

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]
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Centrality selection, e.g. by impact parameter

We investigate central collisions with b < 2.75 fm.
The superposition of two Gauss distributions (with mean 4 » and
variance o4 o) has a negative kurtosis

0.15F

4 20,2 4
Ky — 1/8Au" + 3X°Au” + 6% _3-0
1/8Au* + X2Au2 + 234
with Ay = [pp — pq| and 22 = o2 + o3.
s The distribution approaches
/\ a box-distribution with a

0.05

L\ Kooy — —1.2.

K_20=-0.96




Effects of centrality selection

Suggestion by STAR to reduce centrality bin width effects:

:M H!:
Eorg % o 0 J.o é ¥l
N TR % I ¢
¢ =
» calculate moments for each «13* . ¢
fixed Neharge in one wider o f » fxed < 05
centrality bin ; %é = retbayon
30~ 3 e netproton
» take the weighted average oo | ¢ CeWEcorected (o)
" \ SN:‘:(GCV)

(MN et al., QM 2011 proceedings)
problems:

» (anti-) protons constitute a larger fraction of all charged particles
with decreasing energy
> fixing Neharge PUtS @ bias on the fluctuations

» baryon conservation and bias on fluctuation by centrality
selection lead to negative values of the kurtosis



Summary

-
» supercooling and reheating effects in nonequilibrium chiral fluid
dynamics
» enhanced sigma and pion fluctuations at a first order phase
transition
» dynamic correlation length at the critical point
» baryon number conservation and bias on fluctuations by
centrality selection lead to negative kurtosis
Outlook:
» extend chiral fluid dynamics to finite yg and study baryon density
fluctuations
» use realistic initial conditions and study event-by-event
fluctuations in chiral fluid dynamics

£ACE DiAGM




Fluid dynamics

Equation of state

EoS depends on the actual value of ¢
pressure:

plo. T) = —Vesi(o, T) + U(0)
energy density:

e(o, T) = Tap(a‘fT' D pe. 1)

This relation is obtained from thermodynamic consistency, which is
guaranteed by the 2PI effective action!



Fluid dynamics

Initial conditions

temperature profile, Tin; = 160 MeV:

T(%,t=0) = Tin
T (T+exp((F—-R)/a)(1 +exp (12| — 1)/ 2))
sigma field:
(X, t =0) = Oeq + 00 (X) .
with T 1

energy density in units of gy

e(X,t =0) = eeq(T,0)




Energy-momentum conservation

first order phase transition

400

350

for the full propagator: a0 £ Frevpa—
Z 250 | V200~~~
Hv HUN j\ 200 |- 1/2[\—(:1 .
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HERE, approximation of an ideal

. critical point
fluid and the source term 100 : ‘ P :

ou Ty =gtrS. (x, x)
=0, T} =8 o0

E/GeV
T

(MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962)



Time evolution

energy density
critical point

/fm

first order phase transition
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Energy transfer between the field and the heat bath

AEgiss ~ _ay TgoAt = (gPs + ﬂatU)atO'At
The total energy of the ¢ field

E, =1/20/0% +1/2Vc? + U(0)
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first order phase transition critical point
quench from T = 160 MeV to quench from T = 160 MeV to
T =100 MeV T =130 MeV



