What Favors and Disfavors the Critical Point of QCD?

Kenji Fukushima

(Department of Physics, Keio University)

Talk Plan

રે અમેરિયાન રેન્ડ સ્થિરિયાને અમેરિયાન કે અમેરિયાન સ્થિરિયાન કરી સ્થિરિયાને અમેરિયાને અમેરિ

- **Why many chiral models predict a first-order phase transition and the QCD critical point?**
- **Why those predictions are easily changed even qualitatively?**
- **Liquid-gas phase transition of nuclear matter** *"Established" critical point of QCD*
- **Understanding in analogy to nuclear matter**
- **Summary**

"Guessed" Phase Diagram of QCD

. మత్తిన ప్రస్తుత్తున్న మత్తిన ప్రత్యేక మత్తిన మత్తి ప్ర

Fukushima-Hatsuda (2010)

"Guessed" Phase Diagram of QCD

and said a show that all and show and show

Fukushima-Hatsuda (2010)

"Guessed" Phase Diagram of QCD కలప్పుడు పలప్పుడు పలప్పుడు పలప్పు పలప్పుడు పలప్ప

Fukushima-Hatsuda (2010)

QCD Phase Transitions

, නිවේකයේදී, නිවේකයේදී, නිවේකයේදී, නිවේකයේදී, නිවේකයේදී, නිවේකයේදී, නි

Relativistic Heavy-Ion Collisions aim to see: Color (or Quark) Deconfinement \rightarrow Talk by Huang

QCD Phase Transitions

i dan dalam dalam dalam dalam dalam dalam dalam dalam da

Relativistic Heavy-Ion Collisions aim to see:

Chiral Symmetry Restoration

QCD Critical Point (formerly called **C**ritical **E**nd-**P**oint)

If this is found, it would be the first clear indication for the chiral phase transition in the heavy-ion experiment. (Dilepton measurement may give a signature, but indirect.)

Deconfinement is, on the other hand, already evident... (Quark number scaling for example)

Coherent Tendency

ಪ್ ಮತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತು ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ ಸತ್ತುವ **Many chiral models coherently predict a 1storder phase transition at high baryon density.**

Nambu—Jona-Lasinio (NJL) Model Quark-Meson (QM) Model (~ Linear-*s* Model) Polyakov-loop Coupled NJL (PNJL) Model Polyakov-loop Coupled QM (PQM) Model Chiral Random Matrix Model (~ NJL Model) Strong-coupling Expansion $(\sim$ NJL Model) **Asakawa-Yazaki (1989)**

Look like various models, but they are relatives...

Zero-point Energy favors larger *M* **Interaction Energy favors smaller** *M*

Medium Effects favor smaller *M* **Chiral Phase Transition**

Zero-Point Energy

Interaction Energy

છે. જોવાના આ જે જે તેમના જોવાના જોવાના પ્રાથમિક જોવાની પ્રાથમિક જોવાની પ્રાથમિક જોવાની પ્રાથમિક જોવાની પ્રાથમિ

$$
-\frac{M^2}{4G} = -\frac{N_c N_f \Lambda^4}{4\pi^2 g} \xi^2 \qquad \left(G = \frac{\pi^2 g}{N_c N_f \Lambda^2}\right)
$$

Vacuum Energy = Zero-point Energy + Interaction Energy

Medium Effects

and are a strained a $P_{\mu} = 2 N_c N_f T \int \frac{d^3 p}{(2-p)^3}$ $\frac{d}{(2\pi)^3}$ $\left(\ln \left[1 + e^{-(\sqrt{p^2 + M^2} - \mu)/T} \right] + \ln \left[1 + e^{-(\sqrt{p^2 + M^2} + \mu)/T} \right] \right)$ $=2 N_c N_f \int_0^{\mu} d\mu' \int \frac{d^3p}{(2\pi)^3}$ 1 1 − $(2\pi)^3$ $\vert e \vert$ $e^{(\sqrt{p^2+M^2}+\mu')/T}+1$ $e^{(\sqrt{p^2+M^2}-\mu')/T}+1$ $4 N_c N_f T \int \frac{d^3 p}{(2-p)^3}$ $\frac{d}{(2\pi)^3}$ ln $[1+e^{-\sqrt{p^2+M^2/T}}]$ **Density Temperature** \rightarrow 2 *N*_c N_f $\int_0^{\mu} d\mu'$ $\int \frac{d^3p}{(2\pi)^3}$ $\frac{a}{(2\pi)^3}$ $\theta(\mu' - \sqrt{p^2 + M^2})$ $(T \to 0)$ $N_c N_f$ $\frac{\sqrt{f}}{2}$ \int_M^{μ} *d* μ '(μ⁻²−*M*²)^{3/2} θ(μ−*M*) = 3π $N_c N_f$ $\mu + p_F$ 5 3 p_F μ³ – $M^2 p_F$ μ+ $M^4 \ln \left(\frac{v}{v} \right)$ = $\theta(\mu-M)$ $\left|\mu-p_{F}\right|\right|$ $12 \pi^2$ 2 4 $N_c N_f$ μ⁴ 2 *M* $~≤$ $\frac{1}{2}$ $\left| 1-3 \right|$ = $\int \theta(\mu-M)$ $\overline{\mu}$ 12π Nov. 7, 2011 @ CPOD (Wuhan) 12

If a is small enough... මේ ප්රමාදයි. ප්රමාදයි. ප්රමාදයි. ප්රමා ප්රමාදයි. ප්රමාදයි. ප්රමාදයි. ප්රමාදයි. ප්ර **Chiral phase transition in** *T* **=0 quark matter**

This simple analysis tells us...

1. 1st-order phase transition depends on the tachyonic mass (negative curvature) at *M* =0 .

is all the state of the second side the state of the state of the state of

- Not constrained by observables around the physical vacuum at $M=$ M_0 .
- **Curvature is model-dependent.**
	- NJL → Weak 1st-order (CP at lower *T*) LSM → Strong 1st-order (CP at higher *T*)
- c.f. Stephanov diagram (scattering plot)

- **Roughly speaking...**
	- Weaker χ SB (smaller bag const.) \rightarrow CP favored Stronger χ SB (larger bag const.) \rightarrow CP disfavored

Source of Ambiguity ಪ್ ಸಂಶೋಧಿ ಸಂಶೋಧಿ ಸಂಶೋಧಿ ಸಂಶೋಧಿಸಲ್ಲಿ ಸಂಶೋಧಿ ಸಂಶೋಧಿ ಸಂಶೋಧಿ ಸಂ **Is the Interaction Energy really so simple?** M^2 □ **Simplest Choice** − 4*G*

□ **Higher-order Interaction** *M***-Terms**

 − M^2 4*G* $+\eta M^3$ U(1)-axial anomaly with *N*_f=3

□ **Different-type of Interaction** *n***-Terms**

$$
-\frac{M^2}{4G}-G_V n^2
$$
 P as a fun
Not modil

ction of *n* as well as M fy the vacuum properties

□ **Etc, etc,...**

Cubic Term

Density Terms

astronic, destronic, destronic, destronic, destronic, destronic, destronic **Vector Interaction (for example)** Talk by Sasaki $L_V = -G_V(\bar{\psi} \gamma_\mu \psi)(\bar{\psi} \gamma^\mu \psi)$ Not affect chiral symmetry Non-zero in general $G_V N_c^2 N_f^2$ $\delta P_{\mu} = -G_V n^2 = \frac{1}{9} \pi^4 \left(\mu^2 - M^2 \right)^3 \theta \left(\mu - M \right)$ $N_{\it c}\,N_{\it f}\mu^{\it 4}$ 2 *M* P_{μ} ^{\simeq} $\frac{1}{2}$ (1 – 3(– $\int \theta(\mu-M)$ $\frac{1}{\mu}$ 12π $N_{c}\,N_{f}\mu^{4}$ $4\,G_{\it V}\,N_{\it c}\,N_{\it f}\,\mu^2$ 2 *M* $P_{\mu} + \delta P_{\mu} \simeq$ 1− $\frac{1+\epsilon^{-1}+1}{3\pi^2}\Bigg|\Big(1-3\Big)^2$ $\int \theta(\mu-M)$ $\overline{\mu}$ $\sqrt{12\pi^2}$

Condition for 1st-order

0.076

 $a <$ $N_c N_f$ 8π $\overline{2}$ \vert \vert 1− $4\,G_V\,N_{\,c}N_{\,f}$ μ 2 3π $\overline{\mathbf{2}}$) 0.067

Not satisfied in NJL for $G_V > 0.25$ *G* CP disappears!

Nov. 7, 2011 @ CPOD (Wuhan) 18

Experimental Evidences తో సంస్థ పరిశ్రీనంలో, మరోసంలో, మరోసంలో, మరోసంలో, మరోసంలో, మరోసంలో, మరోసంలో, మర **(At least) 13 evidences (Chomaz: nucl-ex/0410024)**

Scaling-law in the size distribution of the fragments

Fragment size fluctuations with predicted powers

Temperature not changed by diff. *E* (Caloric Curve)

Saturation of Nuclear Matter ම මෙමගැයි මෙමගැයි මෙමගැයි මෙමගැයි මෙමගැනි මෙමගැයි මෙමගැයි මෙමගැයි මෙමගැයි මෙමග **1st-order phase transition is a natural consequence from the** *saturation property* **and that** *n is conserved*

Nov. 7, 2011 @ CPOD (Wuhan) 21

QCD Critical Point in Terms of n ను ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం ప్రస్తుత్వం **Medium Effects** $N_{\it c}\,N_{\it f}\mu^{\it 4}$ 2 $3π²n²$ *M* P_{μ} \simeq $\frac{1}{2}$ $\left| 1-3 \right|$ = $\int \theta(\mu-M)$ ≃ $\frac{1}{\mu}$ $4 N_c N_f \mu^2$ 12π **Vacuum Energy** $P_{\chi} = -a(M_0^2 - M^2)^2 \approx -a[M_0^4 + 2aM_0^2M^2 + \cdots]$ $6\pi^4$ 2 \simeq - *a* M_0^4 + $a M_0^2 \mu^2$ - $\frac{N_c^2 N_f^2}{m^2} a M_0^2 \mu^2 n^2 + ...$ 3 0.4 **Saturation appears when** $0₂$ N *c* N *f* $a <$ $-0²$ $8\,\pi^2$ -0.4 ^{0.8} ¹ CPOD (Wuhan) **Same Condition** ²² 0.2 0.4 0.6 0.8 Ω

 \boldsymbol{n}

Density Terms Revisited

ારા કેવાનારે તરીકે વખતે તેમ કેવાનારે તરીકે વાંચીવનારે તરીકે વખતે તેમ કેવાનારે

Vector-interaction generate a term like

If G_V is too strong, the pressure is pushed down, and there appears no saturation point \rightarrow no CP Effect of the vector-interaction is trivially understandable from the point of view of liquid-gas picture.

Summary

స్ మాలిద్దాన్ని మాలిద్దాన్ని మాలిద్దాన్ని మాలిద్దాన్ని మాలిద్దాన్ని మాలిద్దాన్ని మాలిద్దా

- **Many chiral models predict a 1st-order phase** transition at high baryon density because the densityinduced pressure is the largest at *M* =0 .
- **Strength of the 1-st order transition depend on** unphysical curvature at $M=0 \rightarrow$ Model dependent!
- **Higher-order** *M***-terms and additional** *n***-terms would** change the nature of the phase transition.
- **More natural understanding is of a liquid-gap phase** transition in terms of *n* just like in nuclear matter.