What Favors and Disfavors the Critical Point of QCD?

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Kenji Fukushima

(Department of Physics, Keio University)

Talk Plan

hitan an aitan an aitan aitan aitan aitan aitan aitan aitan aitan ai

- Why many chiral models predict a first-order phase transition and the QCD critical point?
- Why those predictions are easily changed even qualitatively?
- Liquid-gas phase transition of nuclear matter "Established" critical point of QCD
- Understanding in analogy to nuclear matter
- Summary

"Guessed" Phase Diagram of QCD

EN MARTINA EN

Fukushima-Hatsuda (2010)

"Guessed" Phase Diagram of QCD

ER for des ER for des ER for des ER for ER for des ER fo En for des ER for des E

Fukushima-Hatsuda (2010)

"Guessed" Phase Diagram of QCD

Fukushima-Hatsuda (2010)

QCD Phase Transitions

ಚಿತ್ರಿಲ್ಲಾನಿ, ಚಿತ್ರಿಲ್ಲಾನಿ, ಚಿತ್ರಿಲ್ಲಾನಿ, ಚಿತ್ರಿಲ್ಲಿನಿ, ಚಿತ್ರಿಲ್ಲಾನಿ, ಚಿತ್ರಿಲ್ಲಾನಿ, ಚಿತ್ರಿಲ್ಲಿನಿ, ಚಿತ್ರಿಲ

Relativistic Heavy-Ion Collisions aim to see:Color (or Quark) Deconfinement→ Talk by Huang

QCD Phase Transitions

Relativistic Heavy-Ion Collisions aim to see:

Chiral Symmetry Restoration

QCD Critical Point (formerly called Critical End-Point)

If this is found, it would be the first clear indication for the chiral phase transition in the heavy-ion experiment. (Dilepton measurement may give a signature, but indirect.)

Deconfinement is, on the other hand, already evident... (Quark number scaling for example)

Coherent Tendency

ŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġĸĊĸĔŊġ

Many chiral models coherently predict a 1storder phase transition at high baryon density.

Nambu—Jona-Lasinio (NJL) ModelAsakawa-Yazaki (1989)Quark-Meson (QM) Model (~ Linear-σ Model)Polyakov-loop Coupled NJL (PNJL) ModelPolyakov-loop Coupled QM (PQM) ModelChiral Random Matrix Model (~ NJL Model)Strong-coupling Expansion (~ NJL Model)

Look like various models, but they are relatives...

"Model-independent" Consideration , silan , silan , silan , silan , sila silan , silan , silan , silan , silan , silan , **Pressure in a "Quasi-Quark" Description** $P = 2N_{c}N_{f}\int^{\Lambda} \frac{d^{3}p}{(2\pi)^{3}}\sqrt{p^{2}+M^{2}}$ Zero-point Energy + $2N_{c}N_{f}T\int \frac{d^{3}p}{(2\pi)^{3}} \left(\ln\left[1+e^{-(\sqrt{p^{2}+M^{2}}-\mu)/T}\right] + \ln\left[1+e^{-(\sqrt{p^{2}+M^{2}}+\mu)/T}\right] \right)$ $-\frac{M^2}{AC}$ — Interaction Energy **Medium Effects**

Zero-point Energy favors larger M Interaction Energy favors smaller M

Medium Effects favor smaller *M* Chiral Phase Transition

Zero-Point Energy

Interaction Energy

$$-\frac{M^2}{4G} = -\frac{N_c N_f \Lambda^4}{4\pi^2 g} \xi^2 \qquad \left(G = \frac{\pi^2 g}{N_c N_f \Lambda^2}\right)$$

Vacuum Energy = Zero-point Energy + Interaction Energy

Medium Effects

the state of the state $P_{\mu} = 2 N_c N_f T \int \frac{d^3 p}{(2\pi)^3} \left(\ln \left[1 + e^{-(\sqrt{p^2 + M^2} - \mu)/T} \right] + \ln \left[1 + e^{-(\sqrt{p^2 + M^2} + \mu)/T} \right] \right)$ $=2N_{c}N_{f}\int_{0}^{\mu}d\mu'\int\frac{d^{3}p}{(2\pi)^{3}}\left(\frac{1}{e^{(\sqrt{p^{2}+M^{2}}-\mu')/T}+1}-\frac{1}{e^{(\sqrt{p^{2}+M^{2}}+\mu')/T}+1}\right)$ $4N_c N_f T \int \frac{d^3 p}{(2\pi)^3} \ln \left[1 + e^{-\sqrt{p^2 + M^2}/T}\right]$ **Temperature** Density $\rightarrow 2 N_c N_f \int_0^{\mu} d\mu' \int \frac{d^3 p}{(2\pi)^3} \theta(\mu' - \sqrt{p^2 + M^2}) \qquad (T \rightarrow 0)$ $= \frac{N_c N_f}{2 - 2} \int_{M}^{\mu} d\mu ' (\mu'^2 - M^2)^{3/2} \theta(\mu - M)$ $= \frac{N_c N_f}{12 \pi^2} \left(p_F \mu^3 - \frac{5}{2} M^2 p_F \mu + \frac{3}{4} M^4 \ln \left(\frac{\mu + p_F}{\mu - p_F} \right) \right) \theta(\mu - M)$ $\simeq \frac{N_c N_f \mu^4}{12 - 2} \left(1 - 3 \left(\frac{M}{\mu} \right)^2 \right) \theta(\mu - M)$ Nov. 7, 2011 @ CPOD (Wuhan) 12

If a is small enough... Chiral phase transition in *T* =0 quark matter

This simple analysis tells us...

Ist-order phase transition depends on the tachyonic mass (negative curvature) at M=0.

r silan silan silan silan silan sila silan silan

- Not constrained by observables around the physical vacuum at $M = M_0$.
- Curvature is model-dependent.
 - $NJL \rightarrow Weak 1st-order (CP at lower T)$ LSM \rightarrow Strong 1st-order (CP at higher T)
- c.f. Stephanov diagram (scattering plot)

- Roughly speaking...
 - Weaker χ SB (smaller bag const.) \rightarrow CP favored Stronger χ SB (larger bag const.) \rightarrow CP disfavored

Source of Ambiguity Is the Interaction Energy really so simple? $-\frac{M^2}{4G}$

Higher-order Interaction *M***-Terms**

 $-\frac{M^2}{4G} + \eta M^3 \qquad \text{U(1)-axial anomaly with } N_{\text{f}} = 3$

Different-type of Interaction *n***-Terms**

$$-\frac{M^2}{4G}-G_V n^2 \quad \mathbf{F}$$

P as a function of *n* as well as *M* Not modify the vacuum properties

□ Etc, etc,...

Cubic Term

Density Terms

ಜ್ಯಾಸಿ ಮತ್ತಿಜ್ಯಾಸಿ ಮತ್ತಿಜ್ಯಾಸಿ ಮತ್ತಜ್ಯಾಸಿ ಮತ್ತಜ್ಯಾಸಿ **Vector Interaction (for example)** Talk by Sasaki $L_V = -G_V(\bar{\psi} \gamma_{\mu} \psi)(\bar{\psi} \gamma^{\mu} \psi)$ Not affect chiral symmetry Non-zero in general $\delta P_{\mu} = -G_{V} n^{2} = -\frac{G_{V} N_{c}^{2} N_{f}^{2}}{\Omega \pi^{4}} (\mu^{2} - M^{2})^{3} \theta (\mu - M)$ $P_{\mu} \simeq \frac{N_c N_f \mu^4}{12 - 2} \left(1 - 3 \left(\frac{M}{\mu} \right)^2 \right) \theta(\mu - M)$ $P_{\mu} + \delta P_{\mu} \simeq \frac{N_{c} N_{f} \mu^{4}}{12 \pi^{2}} \left(1 - \frac{4 G_{V} N_{c} N_{f} \mu^{2}}{3 \pi^{2}} \right) \left(1 - 3 \left(\frac{M}{\mu} \right)^{2} \right) \theta(\mu - M)$

Condition for 1st-order

0.076

$$\frac{a}{0.067} < \frac{N_c N_f}{8\pi^2} \left(1 - \frac{4 G_V N_c N_f \mu^2}{3\pi^2} \right)$$

Not satisfied in NJL for $G_V > 0.25 G$ CP disappears!

Nov. 7, 2011 @ CPOD (Wuhan)

Experimental Evidences (At least) 13 evidences (Chomaz: nucl-ex/0410024)

Scaling-law in the size distribution of the fragments

Fragment size fluctuations with predicted powers

Temperature not changed by diff. *E* (Caloric Curve)

Saturation of Nuclear Matter 1st-order phase transition is a natural consequence from the saturation property and that n is conserved

Nov. 7, 2011 @ CPOD (Wuhan)

OCD Critical Point in Terms of n ದಿಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂದು ಬೆಟ್ಟೆಂ **Medium Effects** $P_{\mu} \simeq \frac{N_{c} N_{f} \mu^{4}}{12 \pi^{2}} \left(1 - 3 \left(\frac{M}{\mu} \right)^{2} \right) \theta(\mu - M) \simeq \left(\frac{3 \pi^{2} n^{2}}{4 N_{c} N_{f} \mu^{2}} \right)$ Vacuum Energy $P_{\gamma} = -a (M_0^2 - M^2)^2 \simeq -a M_0^4 + 2a M_0^2 M^2 + \cdots$ $\simeq -a M_0^4 + \frac{2}{3} a M_0^2 \mu^2 - \frac{6 \pi^4}{N^2 N_0^2} a M_0^2 \mu^2 n^2 + \cdots$ 0.4 Saturation appears when 0^{2} $a < \frac{IV_c IV_f}{2}$ -0^{2} -0.4 **Same Condition** 0.2 0.4 0.6 0.8 0

CPOD (Wuhan)

n

22

Density Terms Revisited

Vector-interaction generate a term like

If G_V is too strong, the pressure is pushed down, and there appears no saturation point \rightarrow no CP Effect of the vector-interaction is trivially understandable from the point of view of liquid-gas picture.

Summary

, MENGE, MENGE, MENGE, MENGE, MENGE, MENGE, MENGE, MENGE, ME

- Many chiral models predict a 1st-order phase transition at high baryon density because the density-induced pressure is the largest at M = 0.
- Strength of the 1-st order transition depend on unphysical curvature at $M=0 \rightarrow$ Model dependent!
- Higher-order *M*-terms and additional *n*-terms would change the nature of the phase transition.
- More natural understanding is of a liquid-gap phase transition in terms of *n* just like in nuclear matter.