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—— A matrix model for the deconfining phase transition 

 

 

 What can we learn from Lattice QCD 

 How to construct the matrix model  

 Comparison with Lattice 

 

 Meisinger, Miller, Ogilvie(MMO), hep-ph/0108009  

 Dumitru, YG, Hidaka, Korthals-Altes, Pisarski, arXiv:1011.3820 

 



SU(3) gauge theory without quarks 

 
WHOT: (Umeda, Ejiri, Aoki, Hatsuda, Kanaya, Maezawa & Ohno, arXiv:0809.2842) 

(Weakly) first order transition at Tc ~ 290 MeV 

Conformal anomaly, (e-3p)/T4: large peak above Tc 

(e-3p)/T4 

e/T4 

3p/T4 



 Resummed perturbation theory at 3-loop order works down to ~ 3 Tc.   
     (Andersen, Su & Strickland, arXiv:1005.1603) 

 

 Intermediate coupling: s(Tc) ~ 0.3.  
     (Braaten & Nieto, hep-h/9501375 Laine & Schröder, hep-ph/0503061 & 0603048) 

    From two loop calculation, matching original to effective theory: Not so big...  

 

 

 

What happens below ~ 3 Tc?   

 

pertubation theory vs Lattice 

 
 



Ansatz: constant background filed, diagonal matrix 

 

 

 
For SU(N), j=1...N qj = 0, modulo 1.  Hence N-1 independent qj’s. 

 

 

 
Polyakov loop : 

 

measures ionization of color: 

 

 

 

i, j = 1...N 

Confinement:  <l> = 0 

Complete QGP:  <l> = 1 

 

“semi”-QGP:  0 < <l> < 1  partial ionization 

<l>↑ 

Tc ↑  T→  



At one loop, the potential in a constant A0 background field is 

given by: 

 Polyakov loop thus predicts a gas of gluons would always be in the 

deconfined phase. <q> = 0  

 

 Higher orders in perturbation theory does not modify this result. 

 

Add non-perturbative terms, by hand, to generate <q> ≠ 0  

1 

Symmetries of the q’s 

Periodic: q → q + 1 Z(N) transformation.  

Ordering of  Polyakov loop’s eigenvalues irrelevant. 

perturbative plus non-pertubative potential 



1-parameter matrix model, N = 2 

(Dumitru, YG, Hidaka, Korthals-Altes, Pisarski, arXiv:1011.3820) 

Add - by hand - a non-pert. potential Vnon ~ T2 Tc
2.  Also add a term like Vpert: 

Now just like any other mean field theory.  〈q〉given by minimum of Veff: 

〈q〉 depends nontrivially on temperature. 

 

Pressure value of potential at minimum: 



Two conditions: transition occurs at Tc & p(Tc) = 0 

Only one free parameter            choose c2 to fit (e-3p)/T4: optimal choice 

Three parameters in the model 

T/Tc 

Lattice: (Engels, Fingberg, Redlich, Satz & Weber, ’89) 

MMO model, with c2=0, No free parameter 



Lattice vs 1-parameter model, N = 2 

 (e-3p)/T4, lattice 

 (e-3p)/T4, model 

   p/T4, lattice 

  p/T4, model 

 e/T4, lattice  e/T4, model 



Polyakov loop: 1-parameter matrix model ≠ lattice 

Lattice: renormalized Polyakov loop.   

0-parameter model: close to lattice. 

1-parameter model: sharp disagreement. 〈l〉 rises to ~ 1 much faster? 

Sharp rise also found using Functional Renormalization Group (FRG): 
     (Braun, Gies & Pawlowski, arXiv:0708.2413; Marhauser & Pawlowski, arXiv:0812.1144) 

 ⇐ lattice 

 ⇐ 0-parameter 

 ⇓ 1-parameter 

T/Tc 

Lattice: 
(Cardoso, Cardoso & Bicudo, arXiv:1104.5432) 



Interface tension, N = 2 

 vanishes as T→Tc ,  ~ (t-1)2ν . 

Ising 2ν ~ 1.26; Lattice: ~ 1.32. 

Matrix model: ~ 1.5: c2 important. 

Semi-class.: GKA ’04.  Include corr.’s ~ g2 in matrix (T) (ok when T > 1.2 Tc) 

 ⇐ matrix model  

semi-classical 

 ⇐ lattice 

Lattice: 
(de Forcrand, D’Elia & Pepe, hep- lat/0007034) 

 



Adjoint Higgs phase, N = 2 

 A0
cl ~ q 3, so 〈q〉 ≠ 0 generates an (adjoint) Higgs phase: 

(Pisarski, hep-ph/0608242; Unsal & Yaffe, arXiv:0803.0344; Simic & Unsal, arXiv:1010.5515) 

 

 

In background field, A = A0
cl + Aqu : D0

cl Aqu = ∂0 Aqu + i g [A0
cl , Aqu] 

Fluctuations ~ 3 not Higgsed, ~ 1,2 Higgsed, get mass ~ 2T〈q〉 

Hence when 〈q〉 ≠ 0, for T < 1.2 Tc, splitting of masses: 



Adjoint Higgs phase, N = 2 

At Tc:  

mdiag = 0, 

moff ~ 2 mpert. 

 mpert = √2/3 g T 

 m/mpert ~ .56 at 1.5 Tc, from Vnon 

 
⇐ off-diagonal A0 modes 

 ⇐ diagonal A0 mode 

T/Tc 



Lattice: A0 mass as T → Tc - up or down? 

(Kaczmarek, Karsch, Laermann & 

 Lutgemeier, hep-lat/9908010) 

μ/T goes down as T → Tc 

mD/T goes up as T → Tc 

 
 

Gauge invariant: 2 pt function of loops: 

Gauge dependent: singlet potential 

(Cucchieri, Karsch & Petreczky, hep-lat/0103009;  

Kaczmarek & Zantow, hep-lat/0503017) 

 
Which way do masses go as T → Tc? 

Both are constant above ~ 1.5 Tc. 

 



Lattice vs 0- and 1- parameter matrix models, N = 3 

Results for N=3 similar to N=2. 

0-parameter model way off. 

Good fit (e-3p)/T4 for 1-parameter model,  

 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.   

T/Tc 

 ⇐ 1-parameter  

 ⇐ 0-parameter  

 ⇐ Points: lattice   Lattice: 

(Bielefeld, hep-lat/9602007 

Datta & Gupta, arXiv:1006.0938) 



Lattice vs 1- parameter model, N = 3 

 ⇐ e-3p/T4, lattice 

 ⇐ e-3p/T4, model 

  ⇓ e/T4, lattice  ⇓ e/T4, model 

 ⇑ p/T4, lattice 

 ⇑ p/T4,model 



Polyakov loop: matrix models ≠ lattice 

Renormalized Polyakov loop from lattice does not agree with either matrix model 

〈l〉 - 1 ~ 〈q〉2,  by 1.2 Tc,  〈q〉 ~ .05,  negligible. 

 

Again, for T > 1.2 Tc, the T2 term in pressure due entirely to the constant term, c3! 

Rapid rise of 〈l〉 as with FRG.  (Braun, Gies & Pawlowski, arXiv: 0708.2413) 

 ⇐ lattice 

 ⇑ 0-parameter 

1-parameter ⇓ 

Cannot reconcile by shift  

in zero point energy 

Lattice: (Gupta, Hubner & Kaczmarek,  arXiv:0711.2251) 

T/Tc 



Interface tension, N = 3 

Order-order interface tension, , from matrix model close to lattice. 

 

(Tc)/Tc
2 nonzero but small, ~ .02.  Results for N =2 and N = 3 similar - ? 

Semi-classical 

 ⇐ matrix model, N = 2  

 ⇐ matrix model, N = 3  

Lattice: 
(de Forcrand, D’Elia & Pepe, hep-lat/0007034, de Forcrand & Noth, hep-lat/0506005) 

lattice, N=3  



Adjoint Higgs phase, N = 3 

Splitting of masses only for T < 1.2 Tc: 

Measureable from singlet potential,  〈tr L†(x) L(0)〉, over all x. 

⇐ 2 off-diagonal 

⇐ 4 off-diagonal 

⇐ 2 diagonal modes 

At Tc: mdiag  

small, but ≠ 0 

mpert = g T, 

m/mpert ~ .8 at 1.5 Tc, from Vnon. 



Matrix model for N ≥ 3 

To get the latent heat right, two parameter model. 

 

Latent heat, e(Tc)/Tc
4:  1-parameter model too small: 

1-para.: 0.33.  BPK: 1.40 ± .1; DG: 1.67 ± .1.   

 
Latttice latent heat: (Beinlich, Peikert & Karsch (BPK), hep-lat/9608141;  

                                       Datta & Gupta (DG), arXiv:1006.0938) 

2-parameter model, c3(T). Like MIT bag constant. 

WHOT: c3(1) ~ 1.  Fit c3(1) to DG latent heat. 

 

 
Thermodynamics, order-disorder interface 

tensions improve. 



 ⇑ p/T4, lattice 

 ⇑ p/T4, model 

  e/T4, lattice 

 ⇓ e/T4, model 

⇑ (e-3p)/(T2Tc
2), lattice 

 ⇓ (e-3p)/(T2Tc
2), model 

Thermodynamics of 2-parameter model, N = 4 



 ⇑ p/T4, lattice 

 ⇑ p/T4, model 

  e/T4, lattice 

   

 ⇓ e/T4, model 

 (e-3p)/(T2Tc
2), lattice 

 ⇓ (e-3p)/(T2Tc
2), model 

Thermodynamics of 2-parameter model, N = 6 



We construct an effective model as a function of the expectation values of 

the Polyakov loop. 

 

We fixed the parameters in this model by fitting the lattice data of 

conformal anomaly, then use the model to compute other quantities. 

 

Transition region: from model < 1.2 Tc! 

                              from lattice data < 4 Tc... 

 

Above 1.2 Tc, pressure dominated by constant term ~ T2 . (due to small 

expectation value of q.) 

 

Need to include quarks!  
 

Can then compute temperature dependence of:  

 

       shear viscosity, energy loss of light quarks, damping of quarkonia... 

 

Conclusions 





Backup 



Width of transition region, 0- vs 1-parameter 

1-parameter model:  

〈q〉!  0 much quicker above Tc                 sharper (e-3p)/T4 

Physically: sharp (e-3p)/T4 implies region where 〈q〉 is significant is narrow. 

 

 

 ⇐ 0-parameter 

 ⇓ 1-parameter 

T/Tc 

Above ~1.2 Tc, the T2 term in the pressure is due entirely to the 

constant term, c3! This agrees with the lattica data (WHOT). 

〈q〉 ≠ 0 at all T, but 

numerically, negligible 

above ~ 1.2 Tc
 



Lattice data for N ≥ 3 

Scaled by ideal gas values, e and p for N = 3, 4 and 6 look very similar 

N=3: (Boyd et al, hep-lat/9602007);  N = 4 & 6: (Datta & Gupta, arXiv:1006.0938) 

                          

 

N = 3, 4, 6 



Conformal anomaly ≈ N independent 

For SU(N), “peak” in (e-3p)/T4  just above Tc.  Approximately uniform in N. 

 

(Datta & Gupta, arXiv:1006.0938) 

 

long tail? 

N = 3, 4, 6 



Tail in the conformal anomaly 

To study the tail in (e-3p)/T4, multiply by T2  (divided by (N2-1) Tc
2): 

(e-3p)/T2 approximately constant 

N = 3, 4, 6 

(Datta & Gupta, arXiv:1006.0938) 

 



Interface tensions: order-order & order-disorder 

z 

Interface tension: box long in z.   
Each end: distinct but degenerate vacua. 

Interface forms, action ~ interface tension: 

 

T > Tc: order-order interface = ‘t Hooft loop: 

             measures response to magnetic charge 
               (Korthals-Altes, Kovner & Stephanov, hep-ph/9909516) 

 

Also: if trans. 1st order, order-disorder interface at Tc . 


