Refractive Index of Light in the QGP with the HTL perturbation Theory

M.J.Luo (罗敏杰)

University of Science and Technology of China (中国科学技术大学)

in Collaboration with: J. Liu, Q. Wang, H.J. Xu

arXiv:1109.4083

Motivations

- QGP is believed as a new state of matter of the strong interaction
- Transport coefficients for the QGP, e.g. viscosity (stressstress), conductivity (current-current)...
- The Refractive Index (RI) of the QGP is a theoretical motivated observable for the current-current correlation function
- Negative RI has been predicted by AdS/CFT in strongly coupled system with finite chemical potential
- Question: What does the RI behaves in QGP at temperature several times higher than the critical temperature where the perturbative approach is thought to be trustable?

Refractive Index of Light

Refractive Index in a medium

The Refractive Index (RI) measures the speed of light in the medium w.r.t. the vacuum.

n = speed of light in vacuum / speed of light in medium

The medium effect: the interacting of photon with the medium gives rise to a correction to the vacuum action

$$S_{eff} = -\frac{1}{2} \int \frac{d^4 K}{(2\pi)^4} \left[\tilde{E}^{\mu} \tilde{E}_{\mu} - \tilde{B}^{\mu} \tilde{B}_{\mu} \right] - \frac{1}{2} \int \frac{d^4 K}{(2\pi)^4} A^{\mu} \prod_{\mu\nu} A^{\nu} + \dots$$

$$\Pi_{\mu\nu}(K) = -i \int d^4x e^{-iK \cdot x} \theta(t) \langle [J_{\mu}(x), J_{\nu}(0)] \rangle \qquad \qquad A^{\mu} \qquad \Pi_{\mu\nu} \qquad A^{\nu}$$

Framework: the electric permittivity ${\cal E}$ and magnetic permeability μ can be read out from the $S_{\it eff}$, and gives the RI by $n^2={\it E}\mu$

Depine-Lakhtakia Index

The ordinary refractive index $n^2 = \varepsilon \mu$ is quadratic defined

The phase velocity:
$$v_p = \frac{\omega}{k} \hat{k} = \frac{1}{\text{Re}(n)} \hat{k}$$

The energy flow:
$$S = v_g U \hat{k} = \frac{d\omega}{dk} U \hat{k}$$

The sign of the n represents the direction of phase velocity w.r.t. k, but the group velocity is not affected by the sign, so the direction of phase- and group- velocity could be opposite, when

$$v_p < 0, v_g > 0$$

which equivalent to the negative value of the Depine-Lakhtakia index (DL index)

$$n_{DL} = |\varepsilon| \operatorname{Re}(\mu) + |\mu| \operatorname{Re}(\varepsilon) < 0$$

The DL index encodes the extra information of the relative directions of phase- and group- velocity.

The Hard-Thermal-Loop Perturbation theory

The HTL self-energy

The QGP is thought to be weakly coupled in the temperature region far from the critical temperature, the Hard-Thermal-Loop approximation is trustable.

$$= \prod_{\mu\nu} (K) = g^2 \int \frac{d^4P}{(2\pi)^4} Tr \Big[\gamma_{\mu} S(K-P) \gamma_{\nu} S(P) \Big]$$

The quark loops are hard when $T \gg k, \omega$ the integral can be obtained

$$\Pi_{\mu\nu} = \Pi_T P_{\mu\nu} + \Pi_L Q_{\mu\nu}$$

The transverse and longitudinal projectors:

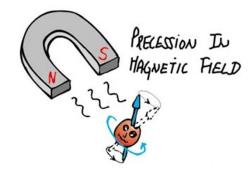
$$\begin{split} P_{\mu\nu} &= g_{\mu\nu} - u_{\mu}u_{\nu} + \frac{1}{k^{2}} \Big(K_{\mu} - \omega u_{\mu} \Big) \big(K_{\nu} - \omega u_{\nu} \big) \\ Q_{\mu\nu} &= \frac{-1}{K^{2}k^{2}} \Big(\omega K_{\mu} - K^{2}u_{\mu} \Big) \Big(\omega K_{\nu} - K^{2}u_{\nu} \Big) \\ \text{Debye mass: } m_{D}^{2} &\equiv e^{2}N_{c} \sum_{f} \bigg(\frac{1}{3}T^{2} + \frac{\mu_{f}^{2}}{\pi^{2}} \bigg) Q_{f}^{2} \end{split}$$

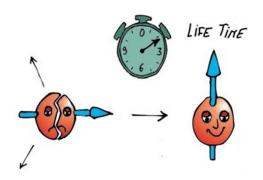
$$\Pi_{T} = \frac{1}{2} m_{D}^{2} \left[\frac{\omega^{2}}{k^{2}} + \left(1 - \frac{\omega^{2}}{k^{2}} \right) \frac{\omega}{2k} \log \frac{\omega + k}{\omega - k} \right]$$

$$\Pi_{L} = m_{D}^{2} \left(1 - \frac{\omega^{2}}{k^{2}} \right) \left[1 - \frac{\omega}{2k} \log \frac{\omega + k}{\omega - k} \right]$$

Two Types of Plasmas

The magnetic response of a plasma to the external magnetic fields is crucial for considering a electromagnetic wave propagating in it.





(1) Magnetizable Plasma:

The magnetic moment density is meaningful, so does the magnetic permeability.

$$S_{eff} = -\frac{1}{2} \int \frac{d^4 K}{(2\pi)^4} \left[\varepsilon \cdot \tilde{E} \cdot \tilde{E} - \frac{1}{\mu} \tilde{B} \cdot \tilde{B} \right]$$

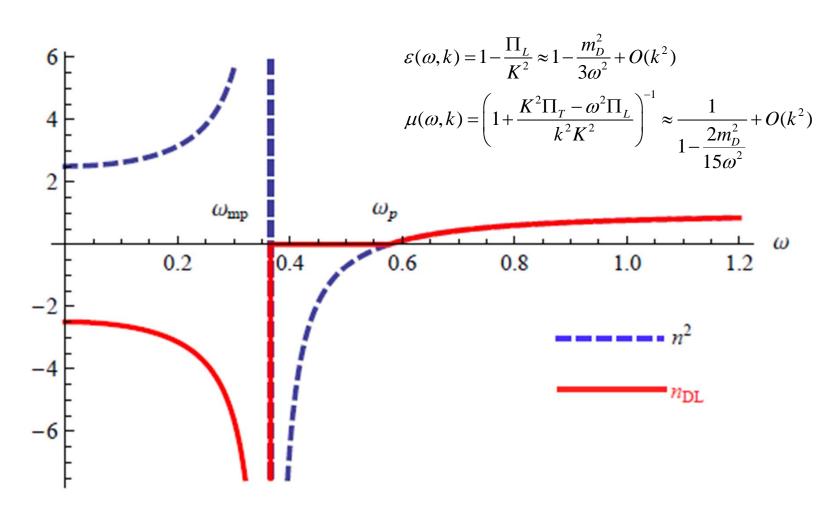
(2) Non-magnetizable Plasma:

The magnetic moment density loses its physical meaning. The magnetic permeability is set to be unity.

$$S_{eff} = -\frac{1}{2} \int \frac{d^4K}{\left(2\pi\right)^4} \left[\tilde{\varepsilon} \cdot \tilde{E} \cdot \tilde{E} - \tilde{B} \cdot \tilde{B} \right] \qquad \tilde{\varepsilon} = \varepsilon + \frac{k^2}{\omega^2} \left[1 - \frac{1}{\mu} \right]$$

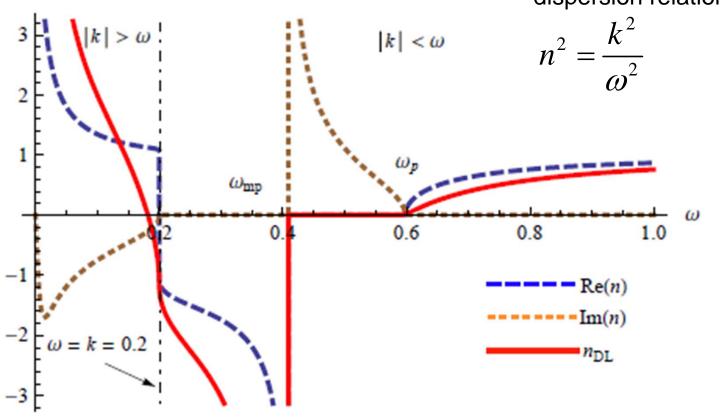
Magnetizable Plasma

Small spatial dispersion



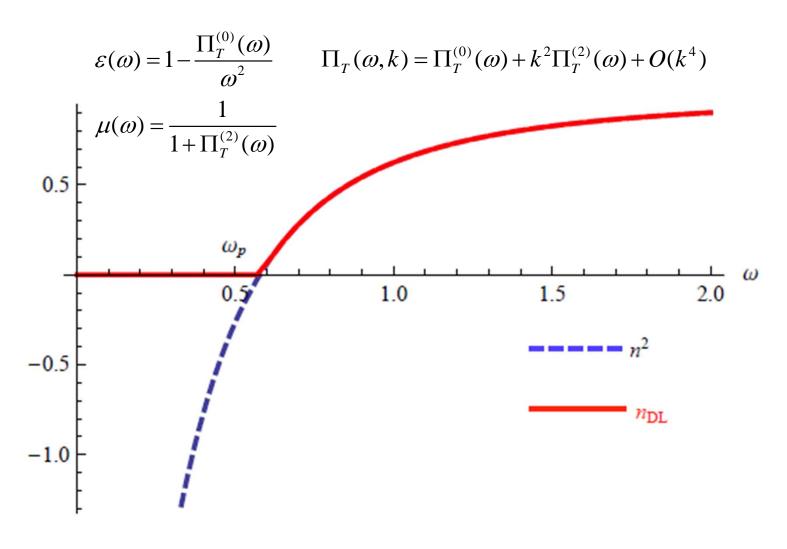
Frequency structure of RI

dispersion relation:

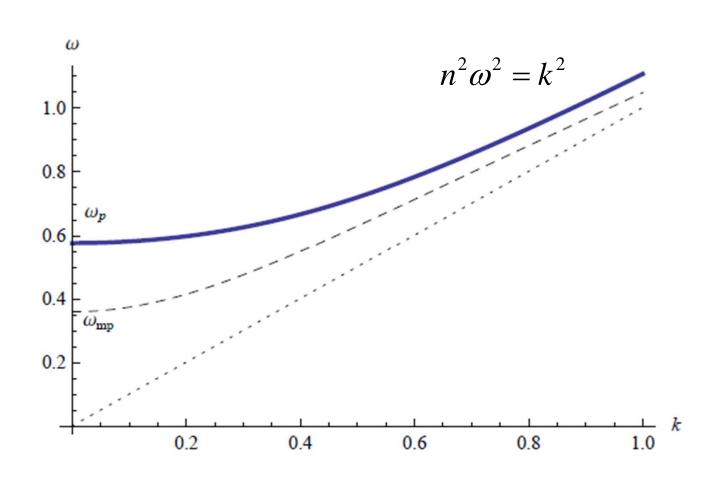


Non-magnetizable Plasma

Small spatial dispersion



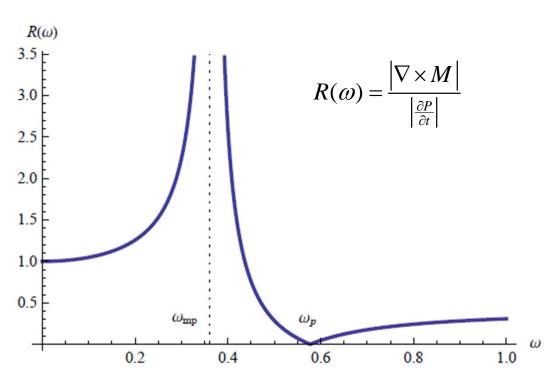
Dispersion Relation



A criterion: The Induced Current

The electromagnetic induced current:

$$J = \nabla \times M + \frac{\partial P}{\partial t}$$



When $R(\omega) \gg 1$ the induced current is dominated by the magnetization, but the dielectric polarization, the magnetic moment is physically meaningful.

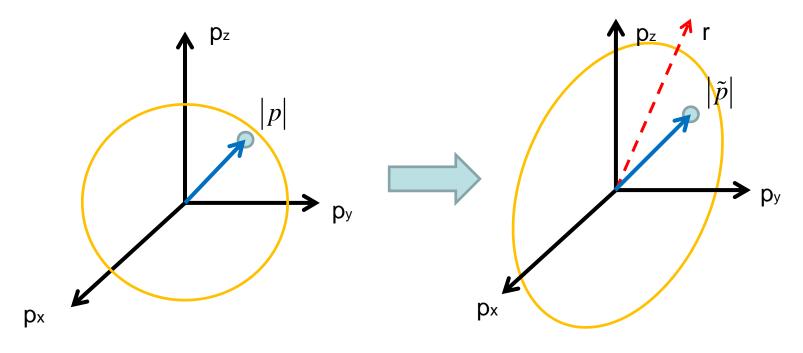
Anisotropic Quark Matter

Anisotropic self-energy (I)

The self-energy of photon in terms of distribution function can be expressed as:

$$\Pi_{\mu\nu}(K) = -e^2 N_c \sum_a Q_a^2 \int \frac{d^3 p}{(2\pi)^3} V_\mu \frac{\partial f_a(p)}{\partial p_i} \left(g_{\nu i} - \frac{K_i V_\nu}{K \cdot V + i\eta} \right)$$

Do the replacement:
$$p \to \tilde{p} = \sqrt{p^2 + \xi(p \cdot r)^2}$$



Anisotropic self-energy (II)

Small ξ expansion,

$$\begin{split} \Pi_{ij} &= -m_D^2 \int \frac{d\Omega}{4\pi} \frac{v_l + \xi(v \cdot r)r_l}{\left[1 + \xi(v \cdot r)^2\right]^2} v_i \left(\delta_{jl} + \frac{k_l v_j}{K \cdot V + i\eta}\right) \\ &= \Pi_{ij}^{(HTL)} + \xi m_D^2 \int \frac{d\Omega}{4\pi} \left[(v \cdot r)r_l - 2(v \cdot r)^2 v_l\right] v_i \left(\delta_{jl} + \frac{k_l v_j}{K \cdot V + i\eta}\right) + O(\xi^2) \end{split}$$

4 tonsorial basis,

$$\begin{split} \left\{ P_{\mu\nu}, Q_{\mu\nu}, C_{\mu\nu}, G_{\mu\nu} \right\} \\ C_{\mu\nu} &= \frac{\tilde{r}_{\mu}\tilde{r}_{\nu}}{\tilde{r}^{2}}, G_{\mu\nu} = \left(K_{\mu}\tilde{r}_{\nu} + K_{\nu}\tilde{r}_{\mu} \right) - \frac{K^{2}}{\omega} \left(\tilde{r}_{\mu}u_{\nu} + \tilde{r}_{\nu}u_{\mu} \right) \qquad \tilde{r}_{\mu} = P_{\mu\nu}r^{\nu} \end{split}$$

Projections,

$$\Pi_{\mu\nu} = \alpha P_{\mu\nu} + \beta Q_{\mu\nu} + \gamma C_{\mu\nu} + \delta G_{\mu\nu}$$

Anisotropic self-energy (III)

The structure functions:

$$\alpha = \Pi_T(z) + \xi \left\{ \frac{z^2}{12} (3 + 5\cos 2\theta) \, m_D^2 - \frac{1}{6} (1 + \cos 2\theta) \, m_D^2 + \frac{1}{4} \Pi_T(z) \left[(1 + 3\cos 2\theta) - z^2 (3 + 5\cos 2\theta) \right] \right\},$$

$$\beta = \Pi_L(z) + \xi \left\{ \frac{1}{6} (z^2 - 1)(1 + 3\cos 2\theta) m_D^2 + \Pi_L(z) \right\}$$

$$\times \left(\cos 2\theta - \frac{z^2}{2} (1 + 3\cos 2\theta) \right),$$

$$\gamma = \frac{\xi}{3} [3\Pi_T(z) - m_D^2](z^2 - 1) \sin^2 \theta,$$

$$z = \omega / k$$

$$\cos \theta = k \cdot r$$

An analytic solvable result

The RI in an anisotropic case is in general a 2-rank tensor,

Magnetizable plasma:

$$\varepsilon_{ij} = \left(1 - \frac{\beta}{K^2}\right) \delta_{ij} - \frac{\gamma}{\omega^2} \frac{r_{Ti} r_{Tj}}{r_T^2}$$

The left- and right- rotating photon

$$\varepsilon_{L} = 1 - \frac{\beta}{K^{2}}$$

$$\varepsilon_{R} = 1 - \frac{\beta}{K^{2}} - \frac{\gamma}{\omega^{2}}$$

$$\frac{1}{\mu} = 1 + \frac{K^{2}\alpha - \omega^{2}\beta}{k^{2}K^{2}}$$

Non-magnetizable plasma:

$$\tilde{\varepsilon}_{ij} = \left(1 - \frac{\alpha}{\omega^2}\right) \delta_{ij} - \frac{\gamma}{\omega^2} \frac{r_{Ti} r_{Tj}}{r_T^2}$$

The left- and right- rotating photon

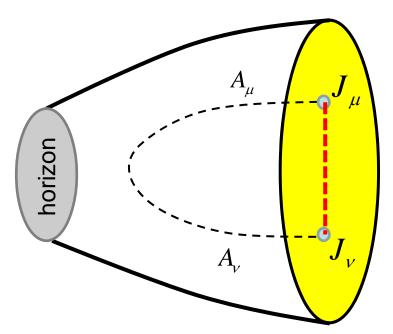
$$\tilde{\varepsilon}_{L} = 1 - \frac{\alpha}{\omega^{2}}$$

$$\tilde{\varepsilon}_{R} = 1 - \frac{\alpha}{\omega^{2}} - \frac{\gamma}{\omega^{2}}$$

Holographic Approach

$$= \prod_{\mu\nu} (K) = -i \int d^4x e^{-iK \cdot x} \theta(t) \langle [J_{\mu}(x), J_{\nu}(0)] \rangle$$

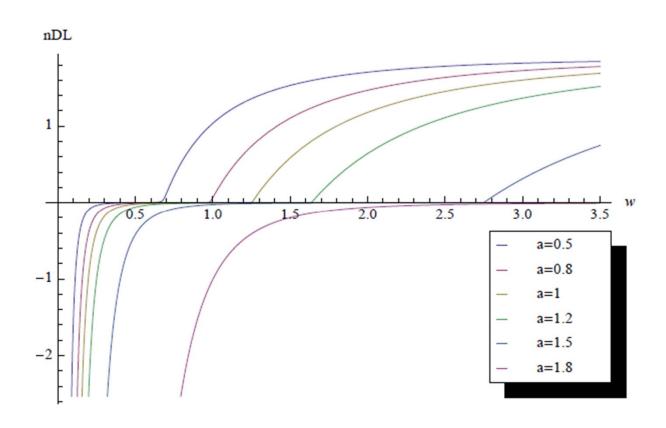
$$A^{\mu} \prod_{\mu\nu} A^{\nu}$$



$$\Pi_{xx} = \frac{i\omega R}{e^2} \left(\frac{3a}{2b^2 \left[2i\omega(1+a) - bk^2 \right]} - \frac{(2-a)^2}{8(1+a)^2 b} \right)$$

$$T = \frac{2-a}{4\pi b}, \qquad \Sigma = \frac{1}{2b} \sqrt{\frac{3}{2}a}$$

Holographic results



Conclusions

- We study the refractive index of electromagnetic wave in a QGP within the HTL perturbation theory.
- We find two types of magnetic response of the plasmas depending on the ratio $R(\omega)$ of the contributions from the magnetic and electric part to the induced current.
- The magnetic permeability loses its physical meaning in a nonmagnetizable plasma, but it is meaningful in a magnetizable one, which has a pole in the RI.
- There are complicated structure of RI below plasma frequency $\omega_p \sim \sqrt{\frac{1}{3}} m_D$ e.g. gap, screening, dissipation and dissipation-less...
- We do not find propagating modes with NRI in HTL perturbation theory which is found in holographic approach

Thank you for your attention!