

The ELQA program for the Inner-Triplet String test in SM-18

Mateusz Bednarek on behalf of the ELQA team

2022-04-13 TE-MPE-PE

Outline

- ELQA Introduction
- ELQA plan post-LS2
- ELQA program on the IT String

ELQA - introduction

- Test superconducting circuits and magnets (at warm, cold and during thermal transitions)
- Ensure readiness for powering
- Detect signs of faults, ageing, degradation
- The test results are assessed according to defined acceptance thresholds and also they are traced over time to find possible trends and signatures of faults that may develop
- The objective is to validate circuits for operation at high currents in a safe way
 Regularly performed starting from the LHC assembly phase (~2005) until today

ELQA "building blocks"

- HVQ High Voltage Qualification
- TFM Transfer Function Measurement
- IRC Instrumentation Resistance Check
- ICC Instrumentation Configuration Check
- TDR Time Domain Reflectometry
- COC Continuity of Conductor check
- QHR Quench Heater Resistance measurement
- DVC Diode opening Voltage Check
- TSQ Temperature Sensor Qualification

HVQ – High Voltage Qualification

- Each circuit (part of a circuit, bus-bar, instrumentation wire or quench heater) is energized individually with respect to ground using a DC voltage source limited to a current of 2 mA
- During the test of a given circuit, all other circuits of the same electrical safety sub-sector are grounded
- Applied test voltages are defined for each component at each configuration and for warm and cold tests

TFM – Transfer Function Measurement

- This measurement determines the impedance as a function of frequency
- The results of these measurements are used to spot possible inter-turn shorts and detect other possible circuit anomalies
- The impedance is measured by applying a sinusoidal signal with maximum amplitude of 10 V and maximum current of 1 A
- Frequency range of 0.1 Hz 100 kHz

Principle of TFM measurement

Principle of TFM vs. GND measurement

Detailed description of other tests is available in the test procedures:

- Regular ELQA in the LHC: EDMS 788197
- IT string procedures being finalised at the moment

Example: program of activities YETS 21/22

IL-LHC PROJEC

8

Number of ELQA tests – LS2

Each test consists of several measurements. Results are stored and analysed.

The ELQA team – LS2

- Collaboration with Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences in Krakow
- ELQA experts at CERN (3 staff)

HC PROJEC

ELQA in action – LS2

Identified non-conformities during LS2

- Total number of NCs detected in LS2: 228
- Similar number of NCs as in LS1

Cold partWarm part

Last update: 06.10.2021

More details in this LMC meeting: https://indico.cern.ch/event/1085327/

ELQA steps in the construction of a magnet

- For HL magnets and components a set of "Electrical Design Criteria" documents was released
- All main manufacturing and test stages are taken into account
- HL-LHC magnets are often very sensitive and test voltage levels and conditions are strictly defined

13

Definition of voltage levels

 Test voltage levels definition and validation is a topic for another presentation

ELQA plan post-LS2

	HL-LHC	LHC
Din 2	 Development of new test benches to cover the needs of new HL-LHC magnets and installations Follow-up of HL magnets and other cold powering assemblies (DCM, link, DFH, DFX etc.) design, manufacturing and related tests Reception tests of those assemblies Tests in IT string during Reception, installation, commissioning and operation 	 Activities in the machine TSs YETS Operation Preparation for LS3 Test systems maintenance and upgrades
1 23	 Tests during: HL-LHC new magnets and cold powering components installation Interconnection of new components Installation of instrumentation cables Commissioning of complete HL-LHC infrastructure Special investigations and diagnostics 	 Standard campaigns Large amount of work at the begining and at the end of LS Special investigations

IT String planning

Tests for IT string/HL installations

Reception

- Take over components from WP3/WP6a
- Reference for future tests
- Assembly
- Commissioning

Reminder of acronyms ELQA "building blocks"

- HVQ High Voltage Qualification
- TFM Transfer Function Measurement
- IRC Instrumentation Resistance Check
- ICC Instrumentation Configuration Check
- TDR Time Domain Reflectometry
- COC Continuity of Conductor check
- QHR Quench Heater Resistance measurement
- DVC Diode opening Voltage Check
- TSQ Temperature Sensor Qualification

HL-LHC assembly

	MIC-0	PAQ-0	SLC	TP3	MIC-1	IT-PAQ	ΙΤΙν	ITIC
HVQ	\checkmark	~	~	~	~	~	~	~
TFM	\checkmark		>	~	~		>	
IRC	\checkmark		>	~	~		>	
ICC	\checkmark	>	>	~	>	~	>	
TDR	\checkmark		>	~	>			\checkmark
COC		>	>	~		~	>	~
QHR	\checkmark				\checkmark			
DVC	\checkmark			✓	\sim			
TSQ	\checkmark		~	~	\checkmark			

- MIC-0 Reference Magnet Instrumentation Check
- PAQ-0 Reference Partial Qualification
- SLC Superconducting Link Check
- TP3 Test Procedure 3
- MIC-1 Magnet Instrumentation Check after transport
- IT-PAQ Inner Triplet Partial Qualification after transport
- ITIV Inner Triplet Interconnection Verification
- ITIC Inner Triplet Instrumentation Check

HL-LHC commissioning

	TP4-A	MIC-W	ТР4-В	TP4-C	TP4-D +MIC-D	MIC-C	ТР4-Е	
	At	At	After	During cool-down/	Λ+ <u>0</u> Ω ν	At cold	At cold	
	warm	warm	flushing	warm-up	ALOU K	ALCOU	Αι τοια	
HVQ		\checkmark	~	✓	optional	~	~	
TFM	~	~			optional	~	~	
IRC	~	~			optional	~	~	
ICC	~	\checkmark			optional	\checkmark	~	
TDR		\checkmark			optional			
COC								
QHR		\checkmark			optional	\checkmark		
DVC		\checkmark				~		
TSQ	~	~			optional	~	~	

TP4-A – Test Procedure 4 type A

MIC-W – Magnet Instrumentation Check at warm

TP4-B – Test Procedure 4 type B

TP4-C – Test Procedure 4 type C

TP4-D – Test Procedure 4 type D

MIC-D – Magnet Instrumentation Check at 80 K

MIC-C – Magnet Instrumentation Check at cold

TP4-E – Test Procedure 4 type E

IT String commissioning and operation

Test type	At warm	At warm after flushing	Cool-down 300 K to 80 K	At 80 K	Cool-down 80 K to 1.9 (4.5) K	At cold	At cold after powering	Warm-up	At warm	Cool-down	At cold	At cold after powering	Warm-up	At 80 K	Warm-up 80 K to 300 K	At warm
TP4-A	\checkmark								\checkmark							~
MIC-W	\checkmark								~							\checkmark
ТР4-В		~							~							~
ТР4-С			~		~			~		~			~		~	
TP4-D				~										~		
MIC-D				\sim										\sim		
MIC-D MIC-C				~		~	~				~	~		~		

Other topics for future presentations related to this topic

- Maintenance of ELQA hardware after years of heavy operation
- Development of new ELQA systems for HL-LHC specific needs
- Test voltage levels definition and validation
- Analysis of test results obtained during ELQA
- Analysis of TFM (impedance measurements)
- Non conformities detected by ELQA
- Methods for diagnosing and localising faults in superconducting magnets

- ELQA on HL-LHC installations (including the IT string test) will be performed by the LHC ELQA team (TE-MPE-PE)
- Reception tests of magnets and cold powering components will be performed by the ELQA team so that there is a reference for the tunnel qualification and that the experience with the new equipment is gained as early as possible
- ELQA test program on the IT String is defined and is being approved
- Development and implementation of new test bench functionalities needed for HL-LHC needs to start soon

