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High Temperature Superconductors

(Picture courtesy of ACT)

1G HTS: BSCCO 2212 (round) & 2223 (tape)
2G HTS: ReBCO (tape)

Ceramic, but bendable, solderable 
& no heat treatment required.

Img from: https://www.superpower-inc.com/Technology.aspx
https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots



Why NI Coils

Figures from the master thesis of B. Goelema on the conductor of the AMS-100 magnet.

Low NZPV cm/s for HTS 
instead of m/s for LTS

Reaching RT with a second

Two Solutions:
- Detect and extract current within a few hundred ms.
- Allow current to bypass the normal spot -> NI Coils.



HTS NI Coils

Radial 

Azimuthal 

Parallel path for the current around a normal zone.

Normal zone

Downside -> Difficult operation and field homogeneity not ensured



No-Insulation Coils: Basic Principle

NI Coil: Operation in Current Control Mode

𝐼𝑠𝑐 = 𝐼0 1 − 𝑒
−𝑡
𝜏

𝜏 = 𝐿/𝑅

𝐼𝑅 = 𝐼0𝑒
−𝑡
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Time Constant:

Coil Current:

Short Current:

Voltage: 𝑉 = 𝐼𝑅𝑅

IR

ISC

𝜏 = 1 𝑠

63 %

37 %

~5 times 𝜏 to get current in a NI coil!

Heat dissipation: P = IR
2R.



No-Insulation Coils: Operation

How fast can you charge a NI COIL?

𝜏/𝑡𝑐ℎ𝑎𝑟𝑔𝑒 = 1

High 𝜏 means a long charge time if cooling is limited. Can we speed things up?



No-Insulation Coils: Operation -> Fast Charge

Charging can be accelerated by going to overcurrent.
High ohmic losses, less static loss as the charge is much quicker.
PSU should provide a current >> Iop.

Example calculated ramp schemes for the NI solenoid TE-MSC tested at the cryolab, CERN July 2021.



Practical Examples

Operation of an HTS NI solenoid Design and Quench Simulation



Demo3 Test

Value Unit

Pancakes 6 -

Tape-width 12 (2 in parallel) mm

Nr. of turns ~205 -

Inductance 74 mH

Bore-diameter 50 mm

Outer Diameter 140 mm

Time constant  (20 K) ~3800 s



Demo3 Test

3 Hall probes in the 
bore of the magnet.

Three Cu cylinders to shield the high dB/dt 
in case of a quench.

Full insert.



Demo3 Test



Demo3 Test – LN2

First test in LN2 -> Checking equipment and pre-cooling

Slow ramp and plateaus. Step to 500 A.

Note that the critical current was about 350 A at 77 K.



Demo3 Test – Test Run 1

Checking instrumentation
Disconnection some wires



Demo3 Test – Test Run 1

We were a bit worried about this peak



Demo3 Test – Test Run 2

>24 T central field

Zero current, free 3 T

No more LHe



Demo3 Test – Test Run 2

Warm-up caused a dB/dt



Development of the Large Ultra-Thin HTS Magnet 

System for the AMS-100 Experiment in Space
Tim Mulder, Jannik Zimmermann, Dominik Pridöhl, Tommaso Bagni, Alexey Dudarev, Daniel Louis, Christian Kaeseberg, Waclaw Karpinski, Thomas Kirn, Matthias Mentink, 
Milou Van Rijnbach, Kai-Uwe Schröder, Arndt Schultz von Dratzig, Carmine Senatore, Thorsten Siedenburg, Helder Silva, Davide Uglietti, Michael Wlochal and Stefan Schael

EUCAS 2021



AMS-100 A Magnetic Spectrometer – Successor of AMS-02

Image from: https://ams02.space/
18



AMS-100: Overview

o Magnetic Spectrometer to be send to 
Lagrange Point 2 (1.5 Mkm from earth).

o Probing high energy cosmic rays, in 
particular anti-protons and anti-deuterons.

o Geometric acceptance of 100 m2 sr.

o Magnet is a 6 m long, 4 m diameter, 1 T HTS 
ultra-thin solenoid. 

o No active cooling, only passive cooling 
using radiators.

o Electrical/thermal/mechanical challenge.

o Compensation coil needed to correct 
magnetic torque during operation.
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The Expedition to Lagrange Point 2
Vehicle and Launch:

o Target launch year: 2039.

o Operational for 10+ years.

o Total estimated mass of AMS-100: 40 Tons1

• ~2 Tons for the magnet system,

• ~18 Tons of detector equipment,

• ~20 Tons of auxiliary equipment and cabling.

o Launched with SpaceX’s Starship rocket.

AMS Pathfinder mission:

o First radiation cooled HTS magnet in space of such size.

o Test the operation at L2.

o Controls, radiation cooling etc.
201 AMS-100: The Next Generation Magnetic Spectrometer in Space – An International Science Platform for Physics and Astrophysics at

Lagrange Point 2, S. Schael et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., vol.  944,  2019



AMS-100: Design Challenges

• Radiation transparency is important -> thin ~4 mm thick aluminium stabilized conductor. 
The coil pack needs to provide mechanical stability for the magnet system. Major 
mechanical challenge.

• Coil needs to survive stresses caused by launch, cool down and magnet powering.

• The AMS-100 magnet will have a large stored energy of approximately 34 MJ -> 21 kJ/kg. 
HTS materials are very stable and are difficult to quench. However, they also have the 
downside that HTS magnets are also difficult to protect, mainly due to the low NZPV. 

• Controlled Resistance coil -> turns are shorted with a controlled resistance. High enough 
resistance to charge to coil in a timely fashion, but low enough to protect the magnet in 
case of a failure event. Major electrical and thermal challenge.

• Magnetic torque needs to be compensated. Can be achieved with a compensation coil. 
However, given the diameter of the main solenoid, difficult to fit in the rocket’s cargo bay.
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AMS-100: A Magnetic Spectrometer

AMS-100 AMS-100 Pathfinder Unit
Coil radius 2.0 0.6 m
Coil length 6.0 1.8 m
Tape width 12 12 mm

Layers 1 1 -
Turns 428 128 -

Inductance 377 10.5 mH
Number of tapes 20 20 -
Total tape length 109 10 km
Operating current 13.5 13.5 kA

Table of properties for the AMS-100 and Pathfinder coils.
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4.0 m

6.0 m

(me, for scale)

Stored Energy 34 1 MJ
Energy Density* 21 7 kJ/kg
Wall thickness ~5 ~5 mm

*Considering only the mass of the conductor.



Thermal Analysis of AMS-100
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Thermal analysis shows 
magnet-radiator temperature 
of 50 to 60 K.



Magnetic Field and Stability

Iop = 13.5 kA

Design B-field of 1 T in the center, 1.07 T // to the 
conductor in the center of the solenoid.

Operating temperature range of 50 to 60 K:
• ΔT of 7 K @ 60 K
• ΔT of 17 K @ 50 K

Large temperature margin is important:
• cooling power is very limited,
• high energy density,
• no intervention possible.

Smart spacing of the conductor / additional HTS 
tape is envisioned at the coil extremities to reduce 
the peak field. Without this, there will be 1.5 T on 
the conductor.

The field homogeneity is not an operation critical 
parameter.
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Dangers of Space: Micrometeorite Impact

25

Magnet survives and operates after 
minor degradation -> No Insulation HTS 



Conductor and Coil Layout

Al-stabilizer

Stack of SC tapes

Shorting turns by (EB / laser) point welding.

- 1 mm2 weld provides a turn-to-turn resistance of about 3e-5 Ω. 

- AMS-100 -> 1250 mm2 per turn (10 % of the circumference) covered 
with point welds of 1 mm2 -> τ = 10 hours.

- Provides mechanical strength and provides thermal/electrical path.

- Shorts are within the envelope of the conductor pack. 

- To be tested and to be demonstrated. 26

Current conductor layout:

- Stack of twenty 12 mm wide HTS tapes, 25 μm 
substrate of 5 μm of stabilizer. 

- HTS stack is soldered to tin-coated aluminum (6110 
series) conductor stabilizer.

- Conductor closed by welded cap.

- Conductor thickness of 3.7 mm.

- Outer surface anodized to provide turn-to-turn 
insulation. 



Structure of the Main Solenoid

Honeycomb for 
mechanical stiffness
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Stack of HTS tapes

Local spot welding

Epoxy between 
layers

Al-alloy skin for mechanical strength 
and axial thermal conductivity 

X0 = 11% = Thickness of structure / Radiation length



Electric-thermal-magnetic Quench Model
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Quench behavior of the non-insulated AMS-100 main solenoid

• Quench behavior of the AMS-100 main solenoid is studied 
for several quench scenarios.

• Quasi 3D thermal, electrical and magnetic nodal-network 
model is built using python.

• Results from this model are analyzed in ANSYS/Abacus to 
evaluate the resulting mechanical response.

• Model studies the effect of slow thermal runaway and 
consequently a fast quench as function of a small defect.

• Not enough resolution at the moment for sudden and very 
local defects (due for i.e. micrometeorite impact).

• Other structural elements, such as end-flanges and ribs, are 
not yet included in the model.

Turns divided in 
to line elements

Thermally and electrically connected:
Axial and azimuthal direction

Axial

Azimuthal



Electric-thermal-magnetic Quench Model
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 Magnetic field evolution during a quench that started in the center turn of the solenoid (and 
on the right part of the graph). Locally current is pushed outwards towards the extremities. 

* Singularity at r=0, due to using straight line elements to calculate the magnetic field

Quench behavior of the non-insulated AMS-100 main solenoid

• Quench behavior of the AMS-100 main solenoid is studied 
for several quench scenarios.

• Quasi 3D thermal, electrical and magnetic nodal-network 
model is built using python.

• Results from this model are analyzed in ANSYS/Abacus to 
evaluate the resulting mechanical response.

• Model studies the effect of slow thermal runaway and 
consequently a fast quench as function of a small defect.

• Not enough resolution at the moment for sudden and very 
local defects (due for i.e. micrometeorite impact).

• Other structural elements, such as end-flanges and ribs, are 
not yet included in the model.

 Magnetic field evolution during a quench that started in an extremity of the solenoid (and 
on the right part of the graph). Locally current is pushed outwards towards the extremities. 

* Singularity at r=0



Quench Behavior and Survival

30

Quench behavior of the non-insulated AMS-
100 main solenoid:

• Quench propagation is driven by 
inductive effects instead of thermal NZP.

• Current is pushed to adjacent turns, 
these turns reach Ic and consequently 
quench themselves.

• Hot-spots are observed near the coil 
extremities as current (and thus energy) 
is pushed towards those.

• Mechanical ripple follows the normal 
zone.

• Thermal run-away is slow, but the quench 
is fast < 1 s. 



Quench Behavior and Survival
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Investigated slow thermal runaway due to 
defective turn(s):

• Current bypasses the defective turn via its turn-
to-turn resistance.

• ~ 4 W of heating in the axial resistance per turn.

• Slow thermal runaway in the order of hour(s).

• All energy dissipated within the magnet during 
the quench, no external extraction.

• Conventional protection methods, such as 
quench heaters, are ineffective.

• Quench at an extremity gives the highest hot-
spot temperature of ~190 K.

• Last iteration of the conductor layout is able to 
cool away heat from one defective turn.

Hot-spot temperature vs time

Heating due to several defective turns

Actual quench within 1 s

E=0



Quench Behavior and Survival
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Investigated slow thermal runaway due to 
defective turn(s):

• NZP is driven by inductive components.

• Current is pushed to adjacent turns, these turns 
reach Ic and consequently quench themselves.

• High current of > 30 kA reached for a short 
period of time.

• Local Lorentz force doubled during a quench.

• Mechanical ripple follows the front of the NZ.

• A quench starting in the center gives the lowest 
hot-spot temperature.

• A quench starting in an extremity gives the 
highest hot-spot temperature on the other 
extremity (all current/energy is pushed towards 
the other extremity).

Quench in the center of the magnet 
in azimuthal section 1.



Quench Behavior and Survival

33

NZPV of ~ 5-10 m/s

Temperature

Hot-spot near extremities

Current



End-flanges, Ribs and Stringers
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End-Flanges (grey): Mechanical 
support of the magnet during 
manufacturing,  launch and 
operation. 
Circular, allows quench-back.

Ribs (yellow): Mechanical 
support of the magnet during 
operation and quench events. 
Circular, allows quench-back.

Stringers (blue): Mechanical support 
during launch.

Mechanical load on the conductor is 
exported from the thermal-electrical 
model to Abaqus.



Mechanical Quench Analyses
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• Shell model set-up in Abaqus to calculate stress 
in the HTS, Al-alloy conductor and structural 
components.

• Model includes the conductor, ribs and stringers.

• Boundary condition: outer rings fixed to circular 
shape, free thermal shrinkage

• Stress in the conductor is almost tripled during a quench 
due to enormous induced current.

• Ribs locally reduce the stress in the conductor.

• Stress in the conductor due to thermal gradients not 
critical, strength of the epoxy to be validated 
experimentally. 

• Peak stress caused by radial Lorentz force.

J. Zimmermann & D. Pridöhl, RWTH Aachen

Center Quench

Extremity Quench

Hoop Stress HTS

Max 280 MPa , 11 mm displacement
Max 240 MPa, 10 mm displacement

Hoop Stress HTS



End-flanges, Ribs and Stringers

36

End-Flanges (grey): Mechanical 
support of the magnet during 
manufacturing,  launch and 
operation. 
Circular, allows quench-back.

Ribs (yellow): Mechanical 
support of the magnet during 
operation and quench events. 
Circular, allows quench-back.

Stringers (blue): Mechanical support 
during launch.

Model is set up to estimate induced 
currents and energy dissipation in the end-
flanges, ribs and other circular components.



AMS-100 - End-flanges and Ribs: Quench-back
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Model to estimate induced currents 
and losses in other components:
- Coil (divided in to 7 sections)
- Thermal aluminum (7 sections)
- End-flanges (2x Al alloy, 2x SS)
- Ribs (25 pieces, Al alloy)

• Coil sections are quenched 0.1 s 
after each other.

• 300-350 kA induced in the Al end-
flanges.

• 50 kA induced in each of the ribs 
(1 MA total).

• 1 MA induced in the thermal 
aluminum.

Optimization of the ribs and end-flanges is ongoing, results are preliminary.

Quench starting in the center

Al end-flanges

Thermal Al

Ribs

Coil



AMS-100 - End-flanges and Ribs: Quench-back

38Optimization of the ribs and end-flanges is ongoing, results are preliminary.

Model to estimate induced currents 
and losses in other components:
- Coil (divided in to 7 sections)
- Thermal aluminum (7 sections)
- End-flanges (2x Al alloy, 2x SS)
- Ribs (25 pieces, Al alloy)

• Coil sections are quenched 0.1 s 
after each other.

• 250-350 kA induced in the Al end-
flanges.

• 50 kA induced in each of the ribs 
(1 MA total).

• 1 MA induced in the thermal 
aluminum.

Quench starting 
in an extremity

Al end-flanges

Thermal Al

Ribs

Coil



AMS-100 - End-flanges and Ribs: Quench-back
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Quench from an extremity:
Total Energy:  33.7  MJ
In conductor:  17.5  MJ (52%)
In ribs:  7.1  MJ (21%)
In flanges:  2.7  MJ (8%)
In thermal aluminum:  6.4  MJ (19%)

Quench from the center:
Total stored energy:  33.7  MJ
In conductor:  17.2  MJ (51%)
In ribs:  7.4  MJ (22%)
In flanges:  2.7  MJ (8%)
In thermal aluminum:  6.4  MJ (19 %)

• Large fraction (50 %) of the stored energy is dissipated in the ribs, flanges and thermal aluminum.

• Will result in a much lower hot-spot temperature.

• Induced current in the structural elements result in a lower mechanical load on the conductor itself.

• Slows down the quench process.

• Expected that further mechanical optimization will reduce the mass and dimensions of the ribs and 
end-flanges. 

• Reduction of energy dissipated in the ribs and end-flanges from 30% -> 10-20 %.

• Next step: to merge sub-models to get one model that includes individual turns that allows quench-
back in all structural components.

• Next step: use model to optimize mechanical structures + conductor/magnet layout. 



Remaining Challenge: Powering the Main Solenoid

Ramping of a radiation cooled NI coil:

• Limited cooling of ~ 30 W available at 55 K.

• Non of the detector equipment will be powered during 
ramp, full use of radiators for the coil and its PSU.

• Ramp time of 100-400 hours is foreseen with a magnet 
time constant of 10-20 hours.

• Resistive ramp losses are dependent on the ratio of ramp-
time and time constant of the magnet, < 15 W.

• Coupling-losses are present, not dominating.

• Magnet powered by a flux-pump to limit heat load to the 
cold mass.

• Flux-pump requires SC switches, which require heaters to 
operate, needs to be cooled by the radiators, < 15 W.

• Losses in the joints < 2 W at nominal current.
40

Limited space for the flux pump and all 
other services of the magnet system.

44
00

5
0

0
 m

m

500x200 rectangular cross section 
available near one of the end-flanges.



Remaining Challenge: Compensation Coil

There is a non-zero background field at L2, which means there will be 
magnetic torque -> magnet tries to align to this B-field.

• Compensation coil is needed to have zero magnetic momentum.

• Several designs are in investigation, concentric and flower design are 
currently the most promising.

• Currently, compensation coil(s) do not fit inside the cargo bay of the 
rocket -> solution needs to be found, not there yet.

• All current designs are inherently unstable and a strong support 
structure would be essential. Worse during a quench.

Flower Design
Concentric Design

41



AMS-100 Demonstrator Coils
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C. Kaeseberg, RWTH Aachen

Several compact demonstrator coils are envisioned and in preparation.

• Test preparation procedures and components.

• Validate models and results (mechanical, electrical and thermal).

• Coils will be pushed to their limits.

• Starting with small, few turn demonstrator coils, later moving to larger 
coils and the coil for the pathfinder mission.

D. Uglietti, EPFL



HTS Tape Validation and Characterization
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Tape tests performed at RWTH Aachen, EPFL, CERN & 
University of Geneva.

• Single tape Ic(T, B) tests to validate their 
performance.

• Soldered tape stack tests to test stacking and 
soldering methods.

• Vacuum soldering testing.

• Bending, winding and soldering tape on a round 
former.

W. Karpinski, RWTH Aachen



AMS-100 Demonstrator Coils
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120 mm

36 turns, stack of eight 
4 mm wide tapes

Cu end-flanges

Brass terminals Peek former

• Compact demonstrator in preparation for validating 
the electrical-thermal-magnetic model.

• Testing all preparation methods.
• Heavily instrumented.
• Testing at 4 K up to 5 T and 20 – 60 K in S.F.

RWTH Aachen



Al-stabilized HTS Conductor
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M. Wlochal, RWTH Aachen

Dr. Ing. S. Olschok, C. Frey
D. Louis, RWTH Aachen

Challenge: Al-stabilized HTS conductor.

Several test welds have been done.

Test campaign in full swing.

M. Wlochal, RWTH Aachen



Conclusions

• AMS-100 magnet system faces many design challenges due to its

➢ ultra-thin 1T HTS coil,

➢ large stored energy of 34 MJ,

➢ very limited cooling via external radiators,

➢ requirement to survive high-vibration launch conditions,

➢ requirement to fit the magnet and its compensation coil(s) inside a rocket. 

• Quench model is under development that predicts the quench behavior of the main solenoid, the 
resulting hot-spot temperature and mechanical load on the conductor.

• Testing of materials and preparation procedures is ongoing. Several small demonstrator coils are in 
preparation to test different design aspects of the AMS-100 magnet, tests scheduled for 2021-2022.

• AMS-100 Magnet System is still in its early design phase. We still expect several design iterations in the 
near future to fine-tune the design.


